This package allows for data objects in R to be rendered as HTML tables using the JavaScript library DataTables
(typically via R Markdown or Shiny). The DataTables
library has been included in this R package.
This package provides functions for 1D and 2D Discrete Cosine Transform (DCT), Discrete Sine Transform (DST) and Discrete Hartley Transform (DHT).
This package provides fast methods to work with Merton's distance to default model introduced in Merton (1974) <doi:10.1111/j.1540-6261.1974.tb03058.x>. The methods includes simulation and estimation of the parameters.
Dynamic Transcriptome Analysis (DTA) can monitor the cellular response to perturbations with higher sensitivity and temporal resolution than standard transcriptomics. The package implements the underlying kinetic modeling approach capable of the precise determination of synthesis- and decay rates from individual microarray or RNAseq measurements.
This package provides a comprehensive implementation of dynamic time warping (DTW) algorithms in R. DTW computes the optimal (least cumulative distance) alignment between points of two time series. Common DTW variants covered include local (slope) and global (window) constraints, subsequence matches, arbitrary distance definitions, normalizations, minimum variance matching, and so on.
Compute the dynamic threshold panel model suggested by (Stephanie Kremer, Alexander Bick and Dieter Nautz (2013) <doi:10.1007/s00181-012-0553-9>) in which they extended the (Hansen (1999) <doi: 10.1016/S0304-4076(99)00025-1>) original static panel threshold estimation and the Caner and (Hansen (2004) <doi:10.1017/S0266466604205011>) cross-sectional instrumental variable threshold model, where generalized methods of moments type estimators are used.
Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS
, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
High-frequency time-series support via nanotime and data.table'.
This package lets you perform unsupervised clustering of amplicon sequencing data in microbiome studies with the Dirichlet-tree Multinomial Mixtures.
Implement weighted higher-order initialization and angle-based iteration for multi-way spherical clustering under degree-corrected tensor block model. See reference Jiaxin Hu and Miaoyan Wang (2023) <doi:10.1109/TIT.2023.3239521>.
Implementation of different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data. It serves to compute empirical cumulative distributions and also kernel density and hazard functions using different bandwidth selectors. Several real data sets are included.
This package provides functions for handling missing data using Distributed Trimmed Scores Regression and other imputation methods. It includes facilities for data imputation, evaluation metrics, and clustering analysis. It is designed to work in distributed computing environments to handle large datasets efficiently. The philosophy of the package is described in Guo G. (2024) <doi:10.1080/03610918.2022.2091779>.
Basic time series functionalities such as listing of missing values, application of arbitrary aggregation as well as rolling (asymmetric) window functions and automatic detection of periodicity. As it is mainly based on data.table', it is fast and (in combination with the R6 package) offers reference semantics. In addition to its native R6 interface, it provides an S3 interface for those who prefer the latter. Finally yet importantly, its functional approach allows for incorporating functionalities from many other packages.
Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a 3+3/PC dose-finding study. Please see Norris (2017a) <doi:10.12688/f1000research.10624.3> and Norris (2017c) <doi:10.1101/240846>.
The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <DOI: 10.14456/sjst-psu.2021.149>.
Manipulates date ('Date'), date time ('POSIXct') and time ('hms') vectors. Date/times are considered discrete and are floored whenever encountered. Times are wrapped and time zones are maintained unless explicitly altered by the user.
You can load a schema from a DTR (data type registry) as an R object. Use this schema to write your data in JSON-LD (JavaScript
Object Notation for Linked Data) format to make it machine readable.
To calculate the sensitivity and specificity in the absence of gold standard using the Bayesian method. The Bayesian method can be referenced at Haiyan Gu and Qiguang Chen (1999) <doi:10.3969/j.issn.1002-3674.1999.04.004>.
This package provides functions to impute large gaps within time series based on Dynamic Time Warping methods. It contains all required functions to create large missing consecutive values within time series and to fill them, according to the paper Phan et al. (2017), <DOI:10.1016/j.patrec.2017.08.019>. Performance criteria are added to compare similarity between two signals (query and reference).
It is a novel tool used to identify the candidate drugs against a particular disease based on the drug target set enrichment analysis. It assumes the most effective drugs are those with a closer affinity in the protein-protein interaction network to the specified disease. (See Gómez-Carballa et al. (2022) <doi: 10.1016/j.envres.2022.112890> and Feng et al. (2022) <doi: 10.7150/ijms.67815> for disease expression profiles; see Wishart et al. (2018) <doi: 10.1093/nar/gkx1037> and Gaulton et al. (2017) <doi: 10.1093/nar/gkw1074> for drug target information; see Kanehisa et al. (2021) <doi: 10.1093/nar/gkaa970> for the details of KEGG database.).
This package provides a data.table
backend for dplyr
. The goal of dtplyr
is to allow you to write dplyr
code that is automatically translated to the equivalent, but usually much faster, data.table
code.
This package provides a system for combining two diagnostic tests using various approaches that include statistical and machine-learning-based methodologies. These approaches are divided into four groups: linear combination methods, non-linear combination methods, mathematical operators, and machine learning algorithms. See the <https://biotools.erciyes.edu.tr/dtComb/>
website for more information, documentation, and examples.
Allows humanitarian community, academia, media, government, and non-governmental organizations to utilize the data collected by the Displacement Tracking Matrix (<https://dtm.iom.int>), a unit in the International Organization for Migration. This also provides non-sensitive Internally Displaced Person figures, aggregated at the country, Admin 1 (states, provinces, or equivalent), and Admin 2 (smaller administrative areas) levels.
Dynamic treatment regime estimation and inference via G-estimation, dynamic weighted ordinary least squares (dWOLS
) and Q-learning. Inference via bootstrap and recursive sandwich estimation. Estimation and inference for survival outcomes via Dynamic Weighted Survival Modeling (DWSurv). Extension to continuous treatment variables. Wallace et al. (2017) <DOI:10.18637/jss.v080.i02>; Simoneau et al. (2020) <DOI:10.1080/00949655.2020.1793341>.