Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisation. Binary, real-valued, and permutation representations are available to optimize a fitness function, i.e., a function provided by users depending on their objective function. Several genetic operators are available and can be combined to explore the best settings for the current task. Furthermore, users can define new genetic operators and easily evaluate their performances. Local search using general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-grain islands approach.
Simulate, estimate and forecast using univariate and multivariate GAS models as described in Ardia et al. (2019) <doi:10.18637/jss.v088.i06>.
This package provides functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990).
This package is designed as an integrated package for genetic data analysis of both population and family data. Currently, it contains functions for sample size calculations of both population-based and family-based designs, probability of familial disease aggregation, kinship calculation, statistics in linkage analysis, and association analysis involving genetic markers including haplotype analysis with or without environmental covariates. Over years, the package has been developed in-between many projects hence also in line with the name (gap).
Analysis of complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, as described by Underwood (1997). There are two restrictions: (i) data must be balanced; (ii) fixed nested factors are not allowed. Homogeneity of variances is checked using Cochran's C test and a posteriori comparisons of means are done using Student-Newman-Keuls (SNK) procedure. For those terms with no denominator in the F-ratio calculation, pooled mean squares and quasi F-ratios are provided. Magnitute of effects are assessed by components of variation.
Help to the occasional R user for synthesis and enhanced graphical visualization of redundancy analysis (RDA) and principal component analysis (PCA) methods and objects. Inputs are : data frame, RDA (package vegan') and PCA (package FactoMineR
') objects. Outputs are : synthesized results of RDA, displayed in console and saved in tables ; displayed and saved objects of PCA graphic visualization of individuals and variables projections with multiple graphic parameters.
GAGE is a published method for gene set (enrichment or GSEA) or pathway analysis. GAGE is generally applicable independent of microarray or RNA-Seq data attributes including sample sizes, experimental designs, assay platforms, and other types of heterogeneity. The gage package provides functions for basic GAGE analysis, result processing and presentation. In addition, it provides demo microarray data and commonly used gene set data based on KEGG pathways and GO terms. These functions and data are also useful for gene set analysis using other methods.
Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions, following Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", Statistical Science, <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and visualize low-order effects, following Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", <doi:10.1007/0-387-28014-6_14>.
This package provides a comprehensive framework for visualizing associations and interaction structures in matrix-formatted data using Generalized Association Plots (GAP). The package implements multiple proximity computation methods (e.g., correlation, distance metrics), ordering techniques including hierarchical clustering (HCT) and Rank-2-Ellipse (R2E) seriation, and optional flipping strategies to enhance visual symmetry. It supports a variety of covariate-based color annotations, allows flexible customization of layout and output, and is suitable for analyzing multivariate data across domains such as social sciences, genomics, and medical research. The method is based on Generalized Association Plots introduced by Chen (2002) <https://www3.stat.sinica.edu.tw/statistica/J12N1/J12N11/J12N11.html> and further extended by Wu, Tien, and Chen (2010) <doi:10.1016/j.csda.2008.09.029>.
Palettes based on video games.
To calculate the relative risk (RR) for the generalized additive model.
Estimate generalized additive mixed models via a version of function gamm
from the mgcv
package, using the lme4
packagefor estimation.
This package provides tools for using genetic markers, stable isotope data, and habitat suitability data to calculate posterior probabilities of breeding origin of migrating birds.
Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>).
This package provides a network-based gene weighting algorithm for pathway enrichment analysis, using either RNA-seq or microarray data. Zhaoyuan Fang, Weidong Tian and Hongbin Ji (2012) <doi:10.1038/cr.2011.149>.
Constructs gains tables and lift charts for prediction algorithms. Gains tables and lift charts are commonly used in direct marketing applications. The method is described in Drozdenko and Drake (2002), "Optimal Database Marketing", Chapter 11.
This package provides methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.
This package implements graphical extension with accuracy in parameter estimation (AIPE) on RMSEA for sample size planning in structural equation modeling based on Lin, T.-Z. & Weng, L.-J. (2014) <doi: 10.1080/10705511.2014.915380>. And, it can also implement AIPE on RMSEA and power analysis on RMSEA.
This package provides a group of sample points are evaluated against a user-defined expression, the sample points are lists of parameters with values that may be substituted into that expression. The genetic algorithm attempts to make the result of the expression as low as possible (usually this would be the sum of residuals squared).
Process in-situ Gamma-Ray Spectrometry for Luminescence Dating. This package allows to import, inspect and correct the energy shifts of gamma-ray spectra. It provides methods for estimating the gamma dose rate by the use of a calibration curve as described in Mercier and Falguères (2007). The package only supports Canberra CNF and TKA and Kromek SPE files.
The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>
.
The Global Biodiversity Information Facility ('GBIF', <https://www.gbif.org>) sources data from an international network of data providers, known as nodes'. Several of these nodes - the "living atlases" (<https://living-atlases.gbif.org>) - maintain their own web services using software originally developed by the Atlas of Living Australia ('ALA', <https://www.ala.org.au>). galah enables the R community to directly access data and resources hosted by GBIF and its partner nodes.
Fits linear regression, logistic and multinomial regression models, Poisson regression, Cox model via Global Adaptive Generative Adjustment Algorithm. For more detailed information, see Bin Wang, Xiaofei Wang and Jianhua Guo (2022) <arXiv:1911.00658>
. This paper provides the theoretical properties of Gaga linear model when the load matrix is orthogonal. Further study is going on for the nonorthogonal cases and generalized linear models. These works are in part supported by the National Natural Foundation of China (No.12171076).
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the lme4 package as the computational engine, as described in Helwig (2024) <doi:10.3390/stats7010003>. Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.