This package provides functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990).
Palettes based on video games.
To calculate the relative risk (RR) for the generalized additive model.
Estimate generalized additive mixed models via a version of function gamm
from the mgcv
package, using the lme4
packagefor estimation.
Process in-situ Gamma-Ray Spectrometry for Luminescence Dating. This package allows to import, inspect and correct the energy shifts of gamma-ray spectra. It provides methods for estimating the gamma dose rate by the use of a calibration curve as described in Mercier and Falguères (2007). The package only supports Canberra CNF and TKA and Kromek SPE files.
The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>
.
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the lme4 package as the computational engine, as described in Helwig (2024) <doi:10.3390/stats7010003>. Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.
Robust regression via gamma-divergence with L1, elastic net and ridge.
Data sets and scripts used in the book Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.
Conducts hierarchical partitioning to calculate individual contributions of each predictor towards adjusted R2 and explained deviance for generalized additive models based on output of gam()
in mgcv package, applying the algorithm in this paper: Lai(2024) <doi:10.1016/j.pld.2024.06.002>.
This package provides functions for fitting the generalized additive models for location scale and shape introduced by Rigby and Stasinopoulos (2005), doi:10.1111/j.1467-9876.2005.00510.x. The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.
Using overlap grouped-lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families. See <doi:10.48550/arXiv.1506.03850>
for more details.
Fits unimodal and multimodal gambin distributions to species-abundance distributions from ecological data, as in in Matthews et al. (2014) <DOI:10.1111/ecog.00861>. gambin is short for gamma-binomial'. The main function is fit_abundances()
, which estimates the alpha parameter(s) of the gambin distribution using maximum likelihood. Functions are also provided to generate the gambin distribution and for calculating likelihood statistics.
This package implements the GAMbag, GAMrsm and GAMens ensemble classifiers for binary classification (De Bock et al., 2010) <doi:10.1016/j.csda.2009.12.013>. The ensembles implement Bagging (Breiman, 1996) <doi:10.1023/A:1010933404324>, the Random Subspace Method (Ho, 1998) <doi:10.1109/34.709601> , or both, and use Hastie and Tibshirani's (1990, ISBN:978-0412343902) generalized additive models (GAMs) as base classifiers. Once an ensemble classifier has been trained, it can be used for predictions on new data. A function for cross validation is also included.
Fits generalized additive models for the location, scale and shape parameters of a generalized extreme value response distribution. The methodology is based on Rigby, R.A. and Stasinopoulos, D.M. (2005), <doi:10.1111/j.1467-9876.2005.00510.x> and implemented using functions from the gamlss package <doi:10.32614/CRAN.package.gamlss>.
Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation.
This package performs Gamma regression, where both mean and shape parameters follows lineal regression structures.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.
Implementation of various inference and simulation tools to apply generalized additive models to bivariate dependence structures and non-simplified vine copulas.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
This is an add on package to GAMLSS. The purpose of this package is to allow users to defined truncated distributions in GAMLSS models. The main function gen.trun()
generates truncated version of an existing GAMLSS family distribution.
Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>.
Implementation of a common set of punctual solutions for Cooperative Game Theory.
Interface for extra smooth functions including tensor products, neural networks and decision trees.