Logger to keep track of informational events and errors useful for debugging.
This package contains functions to help create log files. The package aims to overcome the difficulty of the base R sink()
command. The log_print()
function will print to both the console and the file log, without interfering in other write operations.
This package provides a utility to facilitate the logging and review of R programs in clinical trial programming workflows.
The log4r package is meant to provide a fast, lightweight, object-oriented approach to logging in R based on the widely-emulated log4j system and etymology.
Framework for adding authentication to shiny applications. Provides flexibility as compared to other options for where user credentials are saved, allows users to create their own accounts, and password reset functionality. Bryer (2024) <doi:10.5281/zenodo.10987876>.
Access to the Greek New Testament (27 books) and the Old Testament (39 books) and allow users to do textual analysis on the data. The New and Old Testament have been provided in their original languages, Greek and Hebrew, respectively. Additionally, the Revised American Standard Bible is also provided for users who'd rather use a wordâ forâ word modern English translation.
Enables users to handle the dataset cleaning for conducting specific analyses with the log files from two international educational assessments: the Programme for International Student Assessment (PISA, <https://www.oecd.org/pisa/>) and the Programme for the International Assessment of Adult Competencies (PIAAC, <https://www.oecd.org/skills/piaac/>). An illustration of the analyses can be found on the LOGAN Shiny app (<https://loganpackage.shinyapps.io/shiny/>) on your browser.
Implementation of the Swiss Confederation's standard analysis model for salary analyses <https://www.ebg.admin.ch/en/equal-pay-analysis-with-logib> in R. The analysis is run at company-level and the model is intended for medium-sized and large companies. It can technically be used with 50 or more employees (apprentices, trainees/interns and expats are not included in the analysis). Employees with at least 100 employees are required by the Gender Equality Act to conduct an equal pay analysis. This package allows users to run the equal salary analysis in R, providing additional transparency with respect to the methodology and simple automation possibilities.
This package provides methods for fitting log-link GLMs and GAMs to binomial data, including EM-type algorithms with more stable convergence properties than standard methods.
Computes log-transformed kernel density estimates for positive data using a variety of kernels. It follows the methods described in Jones, Nguyen and McLachlan
(2018) <doi:10.21105/joss.00870>.
An effortless ndjson (newline-delimited JSON') logger, with two primary log-writing interfaces. It provides a set of wrappings for base R's message()
, warning()
, and stop()
functions that maintain identical functionality, but also log the handler message to an ndjson log file. loggit also exports its internal loggit()
function for powerful and configurable custom logging. No change in existing code is necessary to use this package, and should only require additions to fully leverage the power of the logging system. loggit also provides a log reader for reading an ndjson log file into a data frame, log rotation, and live echo of the ndjson log messages to terminal stdout for log capture by external systems (like containers). loggit is ideal for Shiny apps, data pipelines, modeling work flows, and more. Please see the vignettes for detailed example use cases.
Fast estimation of multinomial (MNL) and mixed logit (MXL) models in R. Models can be estimated using "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. Weighted models can also be estimated. An option is available to run a parallelized multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models or models with WTP space utility parameterizations. The main optimization loop uses the nloptr package to minimize the negative log-likelihood function. Additional functions are available for computing and comparing WTP from both preference space and WTP space models and for predicting expected choices and choice probabilities for sets of alternatives based on an estimated model. Mixed logit models can include uncorrelated or correlated heterogeneity covariances and are estimated using maximum simulated likelihood based on the algorithms in Train (2009) <doi:10.1017/CBO9780511805271>. More details can be found in Helveston (2023) <doi:10.18637/jss.v105.i10>.
Identification of interactions between binary variables using Logic Regression. Can, e.g., be used to find interesting SNP interactions. Contains also a bagging version of logic regression for classification.
An easy-to-use ndjson (newline-delimited JSON') logger. It provides a set of wrappers for base R's message()
, warning()
, and stop()
functions that maintain identical functionality, but also log the handler message to an ndjson log file. No change in existing code is necessary to use this package, and only a few additional adjustments are needed to fully utilize its potential.
This package provides functions for fitting a functional principal components logit regression model in four different situations: ordinary and filtered functional principal components of functional predictors, included in the model according to their variability explanation power, and according to their prediction ability by stepwise methods. The proposed methods were developed in Escabias et al (2004) <doi:10.1080/10485250310001624738> and Escabias et al (2005) <doi:10.1016/j.csda.2005.03.011>.
The lognormal distribution (Limpert et al. (2001) <doi:10.1641/0006-3568(2001)051%5B0341:lndats%5D2.0.co;2>) can characterize uncertainty that is bounded by zero. This package provides estimation of distribution parameters, computation of moments and other basic statistics, and an approximation of the distribution of the sum of several correlated lognormally distributed variables (Lo 2013 <doi:10.12988/ams.2013.39511>) and the approximation of the difference of two correlated lognormally distributed variables (Lo 2012 <doi:10.1155/2012/838397>).
This package provides a statistical learning method that tries to find the best set of predictors and interactions between predictors for modeling binary or quantitative response data in a decision tree. Several search algorithms and ensembling techniques are implemented allowing for finetuning the method to the specific problem. Interactions with quantitative covariables can be properly taken into account by fitting local regression models. Moreover, a variable importance measure for assessing marginal and interaction effects is provided. Implements the procedures proposed by Lau et al. (2024, <doi:10.1007/s10994-023-06488-6>).
Fast binning of multiple variables using parallel processing. A summary of all the variables binned is generated which provides the information value, entropy, an indicator of whether the variable follows a monotonic trend or not, etc. It supports rebinning of variables to force a monotonic trend as well as manual binning based on pre specified cuts. The cut points of the bins are based on conditional inference trees as implemented in the partykit package. The conditional inference framework is described by Hothorn T, Hornik K, Zeileis A (2006) <doi:10.1198/106186006X133933>.
This package provides functions to fit log-multiplicative models using gnm', with support for convenient printing, plots, and jackknife/bootstrap standard errors. For complex survey data, models can be fitted from design objects from the survey package. Currently supported models include UNIDIFF (Erikson & Goldthorpe, 1992), a.k.a. log-multiplicative layer effect model (Xie, 1992) <doi:10.2307/2096242>, and several association models: Goodman (1979) <doi:10.2307/2286971> row-column association models of the RC(M) and RC(M)-L families with one or several dimensions; two skew-symmetric association models proposed by Yamaguchi (1990) <doi:10.2307/271086> and by van der Heijden & Mooijaart (1995) <doi:10.1177/0049124195024001002> Functions allow computing the intrinsic association coefficient (see Bouchet-Valat (2022) <doi:10.1177/0049124119852389>) and the Altham (1970) index <doi:10.1111/j.2517-6161.1970.tb00816.x>, including via the Bayes shrinkage estimator proposed by Zhou (2015) <doi:10.1177/0081175015570097>; and the RAS/IPF/Deming-Stephan algorithm.
This package provides histograms, boxplots and dotplots as alternatives to scatterplots of data when plotting fitted logistic regressions.
Routines for fitting Logic Regression models. Logic Regression is described in Ruczinski, Kooperberg, and LeBlanc
(2003) <DOI:10.1198/1061860032238>. Monte Carlo Logic Regression is described in and Kooperberg and Ruczinski (2005) <DOI:10.1002/gepi.20042>.
Density, distribution, quantile and random generation function for the logitnormal distribution. Estimation of the mode and the first two moments. Estimation of distribution parameters.
Uses approximations to compute the natural logarithm of the Gamma function for large values.
This package provides functions to sample from the double log normal distribution and calculate the density, distribution and quantile functions.