User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015): - common effect and random effects meta-analysis; - several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble); - three-level meta-analysis model; - generalised linear mixed model; - logistic regression with penalised likelihood for rare events; - Hartung-Knapp method for random effects model; - Kenward-Roger method for random effects model; - prediction interval; - statistical tests for funnel plot asymmetry; - trim-and-fill method to evaluate bias in meta-analysis; - meta-regression; - cumulative meta-analysis and leave-one-out meta-analysis; - import data from RevMan
5'; - produce forest plot summarising several (subgroup) meta-analyses.
The canonical way to perform meta-analysis involves using effect sizes. When they are not available this package provides a number of methods for meta-analysis of significance values including the methods of Edgington, Fisher, Stouffer, Tippett, and Wilkinson; a number of data-sets to replicate published results; and a routine for graphical display.
This package performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.
MS-based metabolomics data processing and compound annotation pipeline.
Combination of either p-values or modified effect sizes from different studies to find differentially expressed genes.
This package performs multivariate meta-analysis for high-dimensional metabolomics data for integrating and collectively analysing individual-level data generated from multiple studies as well as for combining summary estimates. This approach accounts for correlation between outcomes, considers variability within and between studies, handles missing values and uses shrinkage estimation to allow for high dimensionality. A detailed vignette with example datasets and code to prepare data and analyses are available on <https://bookdown.org/a2delivera/MetaHD/>
.
This package provides functions to perform all steps of genome-wide association meta-analysis for studying Genotype x Environment interactions, from collecting the data to the manhattan plot. The procedure accounts for the potential correlation between studies. In addition to the Fixed and Random models, one can investigate the relationship between QTL effects and some qualitative or quantitative covariate via the test of contrast and the meta-regression, respectively. The methodology is available from: (De Walsche, A., et al. (2025) \doi10.1371/journal.pgen.1011553).
First- and higher-order likelihood inference in meta-analysis and meta-regression models.
The probabilities by one-sided NOISeq are combined by Fisher's method or Stouffer's method.
This package provides a collection of meta-analysis datasets for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses.
This package creates data with identical statistics (metamers) using an iterative algorithm proposed by Matejka & Fitzmaurice (2017) <DOI:10.1145/3025453.3025912>.
This package provides a tool for implementing so called deft approach (see Fisher, David J., et al. (2017) <DOI:10.1136/bmj.j573>) and model visualization.
Assessment of inconsistency in meta-analysis by calculating the Decision Inconsistency index (DI) and the Across-Studies Inconsistency (ASI) index. These indices quantify inconsistency taking into account outcome-level decision thresholds.
This package provides a set of tools to foster the development of reproducible analytical workflow by simplifying the download of data and metadata from DataONE
(<https://www.dataone.org>) and easily importing this information into R.
Given a CSV file with titles and abstracts, the package creates a document-term matrix that is lemmatized and stemmed and can directly be used to train machine learning methods for automatic title-abstract screening in the preparation of a meta analysis.
This package provides functions to analyze coherence, boundary clumping, and turnover following the pattern-based metacommunity analysis of Leibold and Mikkelson 2002 <doi:10.1034/j.1600-0706.2002.970210.x>. The package also includes functions to visualize ecological networks, and to calculate modularity as a replacement to boundary clumping.
This package provides a collection of functions for conducting meta-analysis using a structural equation modeling (SEM) approach via the OpenMx
and lavaan packages. It also implements various procedures to perform meta-analytic structural equation modeling on the correlation and covariance matrices, see Cheung (2015) <doi:10.3389/fpsyg.2014.01521>.
metaCCA
performs multivariate analysis of a single or multiple GWAS based on univariate regression coefficients. It allows multivariate representation of both phenotype and genotype. metaCCA
extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.
Comprehensive network analysis package. Calculate correlation network fastly, accelerate lots of analysis by parallel computing. Support for multi-omics data, search sub-nets fluently. Handle bigger data, more than 10,000 nodes in each omics. Offer various layout method for multi-omics network and some interfaces to other software ('Gephi', Cytoscape', ggplot2'), easy to visualize. Provide comprehensive topology indexes calculation, including ecological network stability.
This package provides a compilation of functions to create visually appealing and information-rich plots of meta-analytic data using ggplot2'. Currently allows to create forest plots, funnel plots, and many of their variants, such as rainforest plots, thick forest plots, additional evidence contour funnel plots, and sunset funnel plots. In addition, functionalities for visual inference with the funnel plot in the context of meta-analysis are provided.
This package implements a variety of methods for combining p-values in differential analyses of genome-scale datasets. Functions can combine p-values across different tests in the same analysis (e.g., genomic windows in ChIP-seq, exons in RNA-seq) or for corresponding tests across separate analyses (e.g., replicated comparisons, effect of different treatment conditions). Support is provided for handling log-transformed input p-values, missing values and weighting where appropriate.
User-friendly package for reporting replicability-analysis methods, affixed to meta-analyses summary. The replicability-analysis output provides an assessment of the investigated intervention, where it offers quantification of effect replicability and assessment of the consistency of findings. - Replicability-analysis for fixed-effects and random-effect meta analysis: - r(u)-value; - lower bounds on the number of studies with replicated positive and\or negative effect; - Allows detecting inconsistency of signals; - forest plots with the summary of replicability analysis results; - Allows Replicability-analysis with or without the common-effect assumption.
Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. metagam provides functionality for removing individual participant data from models computed using the mgcv and gamm4 packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.
This package contains functions that allow Bayesian meta-analysis (1) with binomial data, counts(y) and total counts (n) or, (2) with user-supplied point estimates and associated variances. Case (1) provides an analysis based on the logit transformation of the sample proportion. This methodology is also appropriate for combining data from sample surveys and related sources. The functions can calculate the corresponding similarity matrix. More details can be found in Cahoy and Sedransk (2023), Cahoy and Sedransk (2022) <doi:10.1007/s42519-018-0027-2>, Evans and Sedransk (2001) <doi:10.1093/biomet/88.3.643>, and Malec and Sedransk (1992) <doi:10.1093/biomet/79.3.593>.