This package provides functions for small area estimation.
Time series area-level models for small area estimation. The package supplements the functionality of the sae package. Specifically, it includes EBLUP fitting of the original Rao-Yu model, which in the original form did not have a spatial component. The package also offers a modified ('dynamic') version of the Rao-Yu model, replacing the assumption of stationarity. Both univariate and multivariate applications are supported. Of particular note is the allowance for covariance of the area-level sample estimates over time, as encountered in rotating panel designs such as the U.S. National Crime Victimization Survey or present in a time-series of 5-year estimates from the American Community Survey. Key references to the methods include J.N.K. Rao and I. Molina (2015, ISBN:9781118735787), J.N.K. Rao and M. Yu (1994) <doi:10.2307/3315407>, and R.E. Fay and R.A. Herriot (1979) <doi:10.1080/01621459.1979.10482505>.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
Implementation of small area estimation (Fay-Herriot model) with EBLUP (Empirical Best Linear Unbiased Prediction) Approach for non-sampled area estimation by adding cluster information and assuming that there are similarities among particular areas. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Anisa et al. (2013) <doi:10.9790/5728-10121519>.
This package provides a set of functions and datasets implementation of small area estimation when auxiliary variable is measured with error. These functions provide a empirical best linear unbiased prediction (EBLUP) estimator and mean squared error (MSE) estimator of the EBLUP. These models were developed by Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>.
This package provides several functions for area level of small area estimation using hierarchical Bayesian (HB) methods with several univariate distributions for variables of interest. The dataset that is used in every function is generated accordingly in the Example. The rjags package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
This package provides small area estimation for count data type and gives option whether to use covariates in the estimation or not. By implementing Empirical Bayes (EB) Poisson-Gamma model, each function returns EB estimators and mean squared error (MSE) estimators for each area. The EB estimators without covariates are obtained using the model proposed by Clayton & Kaldor (1987) <doi:10.2307/2532003>, the EB estimators with covariates are obtained using the model proposed by Wakefield (2006) <doi:10.1093/biostatistics/kxl008> and the MSE estimators are obtained using Jackknife method by Jiang et. al. (2002) <doi:10.1214/aos/1043351257>.
Allows users to produce diagnostic procedures and graphic tools for the evaluation of Small Area estimators.
This package provides tools for the simulation of data in the context of small area estimation. Combine all steps of your simulation - from data generation over drawing samples to model fitting - in one object. This enables easy modification and combination of different scenarios. You can store your results in a folder or start the simulation in parallel.
This package provides functionality to fit a zero-inflated estimator for small area estimation. This estimator is a combines a linear mixed effects regression model and a logistic mixed effects regression model via a two-stage modeling approach. The estimator's mean squared error is estimated via a parametric bootstrap method. Chandra and others (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>
) describe the applicability of this estimator to estimation of forest attributes and further assess the estimator's properties.
The saemix package implements the Stochastic Approximation EM algorithm for parameter estimation in (non)linear mixed effects models. The SAEM algorithm (i) computes the maximum likelihood estimator of the population parameters, without any approximation of the model (linearisation, quadrature approximation,...), using the Stochastic Approximation Expectation Maximization (SAEM) algorithm, (ii) provides standard errors for the maximum likelihood estimator (iii) estimates the conditional modes, the conditional means and the conditional standard deviations of the individual parameters, using the Hastings-Metropolis algorithm (see Comets et al. (2017) <doi:10.18637/jss.v080.i03>). Many applications of SAEM in agronomy, animal breeding and PKPD analysis have been published by members of the Monolix group. The full PDF documentation for the package including references about the algorithm and examples can be downloaded on the github of the IAME research institute for saemix': <https://github.com/iame-researchCenter/saemix/blob/7638e1b09ccb01cdff173068e01c266e906f76eb/docsaem.pdf>
.
Select best combination of auxiliary variables with certain criterion.
Compute various common mean squared predictive error (MSPE) estimators, as well as several existing variance component predictors as a byproduct, for FH model (Fay and Herriot, 1979) and NER model (Battese et al., 1988) in small area estimation.
Implementation of small area estimation using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error. The rjags package is employed to obtain parameter estimates. For the references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).
This package implements Additive Logistic Transformation (alr) for Small Area Estimation under Fay Herriot Model. Small Area Estimation is used to borrow strength from auxiliary variables to improve the effectiveness of a domain sample size. This package uses Empirical Best Linear Unbiased Prediction (EBLUP). The Additive Logistic Transformation (alr) are based on transformation by Aitchison J (1986). The covariance matrix for multivariate application is based on covariance matrix used by Esteban M, Lombardà a M, López-Vizcaà no E, Morales D, and Pérez A <doi:10.1007/s11749-019-00688-w>. The non-sampled models are modified area-level models based on models proposed by Anisa R, Kurnia A, and Indahwati I <doi:10.9790/5728-10121519>, with univariate model using model-3, and multivariate model using model-1. The MSE are estimated using Parametric Bootstrap approach. For non-sampled cases, MSE are estimated using modified approach proposed by Haris F and Ubaidillah A <doi:10.4108/eai.2-8-2019.2290339>.
The aim of this package is to offer new methodology for unit-level small area models under transformations and limited population auxiliary information. In addition to this new methodology, the widely used nested error regression model without transformations (see "An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data" by Battese, Harter and Fuller (1988) <doi:10.1080/01621459.1988.10478561>) and its well-known uncertainty estimate (see "The estimation of the mean squared error of small-area estimators" by Prasad and Rao (1990) <doi:10.1080/01621459.1995.10476570>) are provided. In this package, the log transformation and the data-driven log-shift transformation are provided. If a transformation is selected, an appropriate method is chosen depending on the respective input of the population data: Individual population data (see "Empirical best prediction under a nested error model with log transformation" by Molina and Martà n (2018) <doi:10.1214/17-aos1608>) but also aggregated population data (see "Estimating regional income indicators under transformations and access to limited population auxiliary information" by Würz, Schmid and Tzavidis <unpublished>) can be entered. Especially under limited data access, new methodologies are provided in saeTrafo
. Several options are available to assess the used model and to judge, present and export its results. For a detailed description of the package and the methods used see the corresponding vignette.
This package provides methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.
This package provides function for small area estimation at area level using averaging pseudo area level model for variables of interest. A dataset produced by data generation is also provided. This package estimates small areas at the village level and then aggregates them to the sub-district, region, and provincial levels.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
Propose an area-level, non-parametric regression estimator based on Nadaraya-Watson kernel on small area mean. Adopt a two-stage estimation approach proposed by Prasad and Rao (1990). Mean Squared Error (MSE) estimators are not readily available, so resampling method that called bootstrap is applied. This package are based on the model proposed in Two stage non-parametric approach for small area estimation by Pushpal Mukhopadhyay and Tapabrata Maiti(2004) <http://www.asasrms.org/Proceedings/y2004/files/Jsm2004-000737.pdf>.
Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition". This package provides another option of direct estimation using weight. This package also features alpha and beta parameter estimation on calculating process of small area. Those methods are Newton-Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.
Small area estimation unit level models (Battese-Harter-Fuller model) with a Bayesian Hierarchical approach. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Battese et al. (1988) <doi:10.1080/01621459.1988.10478561>.
Enables small area estimation (SAE) of health and demographic indicators in low- and middle-income countries (LMICs). It powers an R shiny application that helps public health analysts, policymakers, and researchers generate subnational estimates and prevalence maps for 150+ binary indicators from Demographic and Health Surveys (DHS). Basing its core SAE analysis workflow on the surveyPrev
package, the app ensures methodological rigor through guided model selection, automated fitting, and interactive visualization. For more details, visit <https://sae4health.stat.uw.edu/>.
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).