Makes it incredibly easy to build interactive web applications with R. Automatic "reactive" binding between inputs and outputs and extensive prebuilt widgets make it possible to build beautiful, responsive, and powerful applications with minimal effort.
It builds dynamic R shiny based dashboards to analyze any CSV files. It provides simple dashboard design to subset the data, perform exploratory data analysis and preliminary machine learning (supervised and unsupervised). It also provides filters based on columns of interest.
This package adds additional Twitter Bootstrap components to Shiny.
This package provides functions that wrap HTML Bootstrap components code to enable the design and layout of informative landing home pages for Shiny applications. This can lead to a better user experience for the users and writing less HTML for the developer.
Implementation of a shiny app to easily compare supervised machine learning model performances. You provide the data and configure each model parameter directly on the shiny app. Different supervised learning algorithms can be tested either on Spark or H2O frameworks to suit your regression and classification tasks. Implementation of available machine learning models on R has been done by Lantz (2013, ISBN:9781782162148).
Perform common useful JavaScript operations in Shiny apps that will greatly improve your apps without having to know any JavaScript. Examples include: hiding an element, disabling an input, resetting an input back to its original value, delaying code execution by a few seconds, and many more useful functions for both the end user and the developer. Shinyjs can also be used to easily call your own custom JavaScript functions from R.
Add functionality to create drag and drop div elements in shiny.
This package provides Ace editor bindings to enable a rich text editing environment within Shiny.
Shiny wrappers for the RGL package. This package exposes RGL's ability to export WebGL
visualization in a shiny-friendly format.
Performing Item Response Theory analysis such as parameter estimation, ability estimation, item and model fit analyse, local independence assumption, dimensionality assumption, characteristic and information curves under various models with a user friendly shiny interface.
Makes it incredibly easy to build interactive web applications with R. Automatic "reactive" binding between inputs and outputs and extensive prebuilt widgets make it possible to build beautiful, responsive, and powerful applications with minimal effort.
This package provides a dynamic timer control (DTC) is a shiny widget that enables time-based processes in applications. It allows users to execute these processes manually in individual steps or at customizable speeds. The timer can be paused, resumed, or restarted. This control is particularly well-suited for simulations, animations, countdowns, or interactive visualizations.
Takes one or more fitted Cox proportional hazards models and writes a shiny application to a directory specified by the user. The shiny application displays predicted survival curves based on user input, and contains none of the original data used to create the Cox model or models. The goal is towards visualization and presentation of predicted survival curves.
This package provides a shiny interface for a simpler use of the sbm R package. It also contains useful functions to easily explore the sbm package results. With this package you should be able to use the stochastic block model without any knowledge in R, get automatic reports and nice visuals, as well as learning the basic functions of sbm'.
This package provides a shiny application estimating the operating characteristics of the Student's t-test by Student (1908) <doi:10.1093/biomet/6.1.1>, Welch's t-test by Welch (1947) <doi:10.1093/biomet/34.1-2.28>, and Wilcoxon test by Wilcoxon (1945) <doi:10.2307/3001968> in one-sample or two-sample cases, in settings defined by the user (conditional distribution, sample size per group, location parameter per group, nuisance parameter per group), using Monte Carlo simulations Malvin H. Kalos, Paula A. Whitlock (2008) <doi:10.1002/9783527626212>.
This package provides interactive plotting for mathematical models of infectious disease spread. Users can choose from a variety of common built-in ordinary differential equation (ODE) models (such as the SIR, SIRS, and SIS models), or create their own. This latter flexibility allows shinySIR
to be applied to simple ODEs from any discipline. The package is a useful teaching tool as students can visualize how changing different parameters can impact model dynamics, with minimal knowledge of coding in R. The built-in models are inspired by those featured in Keeling and Rohani (2008) <doi:10.2307/j.ctvcm4gk0> and Bjornstad (2018) <doi:10.1007/978-3-319-97487-3>.
This package provides a unifying framework for managing and deploying shiny applications that consist of modules, where an "app" is a tab-based workflow that guides a user step-by-step through an analysis. The shinymgr app builder "stitches" shiny modules together so that outputs from one module serve as inputs to the next, creating an analysis pipeline that is easy to implement and maintain. Users of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can be ingested into an R Markdown report for rapid reporting. In short, developers use the shinymgr framework to write modules and seamlessly combine them into shiny apps, and users of these apps can execute reproducible analyses that can be incorporated into reports for rapid dissemination.
This package provides a comprehensive Shiny application for analyzing Whole Genome Duplication ('WGD') events. This package provides a user-friendly Shiny web application for non-experienced researchers to prepare input data and execute command lines for several well-known WGD analysis tools, including wgd', ksrates', i-ADHoRe
', OrthoFinder
', and Whale'. This package also provides the source code for experienced researchers to adjust and install the package to their own server. Key Features 1) Input Data Preparation This package allows users to conveniently upload and format their data, making it compatible with various WGD analysis tools. 2) Command Line Generation This package automatically generates the necessary command lines for selected WGD analysis tools, reducing manual errors and saving time. 3) Visualization This package offers interactive visualizations to explore and interpret WGD results, facilitating in-depth WGD analysis. 4) Comparative Genomics Users can study and compare WGD events across different species, aiding in evolutionary and comparative genomics studies. 5) User-Friendly Interface This Shiny web application provides an intuitive and accessible interface, making WGD analysis accessible to researchers and bioinformaticians of all levels.
This package provides Shiny apps for interactive exploration of single-cell data.
Adds Progressive Web App support for Shiny apps, including desktop and mobile installations.
This is an extension to Shiny that brings interactions and animation effects from the jQuery UI library.
Please see the shinytest to shinytest2 migration guide at <https://rstudio.github.io/shinytest2/articles/z-migration.html>.
This package exposes R bindings to jsTree, a JavaScript library that supports interactive trees, to enable rich, editable trees in Shiny.
Add indicators (spinner, progress bar, gif) in your shiny applications to show the user that the server is busy. And other tools to let your users know something is happening (send notifications, reports, ...).