This is software accompanying the book 'Applied Smoothing Techniques for Data Analysis---The Kernel Approach with S-Plus Illustrations', Oxford University Press. It provides smoothing methods for nonparametric regression and density estimation
Produce small area population estimates by fitting census data to survey data.
Computes the studentized midrange distribution (pdf, cdf and quantile) and generates random numbers.
This package computes standardized mean differences and confidence intervals for multiple data types based on Yang, D., & Dalton, J. E. (2012) <https://support.sas.com/resources/papers/proceedings12/335-2012.pdf>.
This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.
Testing the mediation effect of multiple SNPs on an outcome through a mediator.
Datasets used in "Statistical Methods for the Social Sciences" (SMSS) by Alan Agresti and Barbara Finlay.
Implementation of the Stochastic Multi-Criteria Acceptability Analysis (SMAA) family of Multiple Criteria Decision Analysis (MCDA) methods. Tervonen, T. and Figueira, J. R. (2008) <doi:10.1002/mcda.407>.
The Sparse Marginal Epistasis Test is a computationally efficient genetics method which detects statistical epistasis in complex traits; see Stamp et al. (2025, <doi:10.1101/2025.01.11.632557>) for details.
Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see Lund, Mogensen and Hansen (2019) <arXiv:1805.02407>
. Currently Lasso and SCAD penalized estimation is implemented.
Simple implementation of Semantic Versioning 2.0.0 ('SemVer
') on the vctrs package. This package provides a simple way to create, compare, and manipulate semantic versions in R. It is designed to be lightweight and easy to use.
Efficient procedure for solving the soft maximin problem for large scale heterogeneous data, see Lund, Mogensen and Hansen (2022) <doi:10.1111/sjos.12580>. Currently Lasso and SCAD penalized estimation is implemented. Note this package subsumes and replaces the SMMA package.
This package implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <arXiv:2212.08697>
.
In Switzerland, the landscape of municipalities is changing rapidly mainly due to mergers. The Swiss Municipal Data Merger Tool automatically detects these mutations and maps municipalities over time, i.e. municipalities of an old state to municipalities of a new state. This functionality is helpful when working with datasets that are based on different spatial references. The package's idea and use case is discussed in the following article: <doi:10.1111/spsr.12487>.
Animal movement models including Moving-Resting Process with Embedded Brownian Motion (Yan et al., 2014, <doi:10.1007/s10144-013-0428-8>; Pozdnyakov et al., 2017, <doi:10.1007/s11009-017-9547-6>), Brownian Motion with Measurement Error (Pozdnyakov et al., 2014, <doi:10.1890/13-0532.1>), Moving-Resting-Handling Process with Embedded Brownian Motion (Pozdnyakov et al., 2020, <doi:10.1007/s11009-020-09774-1>), Moving-Resting Process with Measurement Error (Hu et al., 2021, <doi:10.1111/2041-210X.13694>), Moving-Moving Process with two Embedded Brownian Motions.
An easy to use implementation of routine structural missing data diagnostics with functions to visualize the proportions of missing observations, investigate missing data patterns and conduct various empirical missing data diagnostic tests. Reference: Weberpals J, Raman SR, Shaw PA, Lee H, Hammill BG, Toh S, Connolly JG, Dandreo KJ, Tian F, Liu W, Li J, Hernández-Muñoz JJ, Glynn RJ, Desai RJ. smdi: an R package to perform structural missing data investigations on partially observed confounders in real-world evidence studies. JAMIA Open. 2024 Jan 31;7(1):ooae008. <doi:10.1093/jamiaopen/ooae008>.
Feature screening is a powerful tool in processing ultrahigh dimensional data. It attempts to screen out most irrelevant features in preparation for a more elaborate analysis. Xu and Chen (2014)<doi:10.1080/01621459.2013.879531> proposed an effective screening method SMLE, which naturally incorporates the joint effects among features in the screening process. This package provides an efficient implementation of SMLE-screening for high-dimensional linear, logistic, and Poisson models. The package also provides a function for conducting accurate post-screening feature selection based on an iterative hard-thresholding procedure and a user-specified selection criterion.
Starting from a given object representing a fitted model (within a certain set of model classes) whose (non-)linear predictor includes some ordered factor(s) among the explanatory variables, a new model is constructed and fitted where each named factor is replaced by a single numeric score, suitably chosen so that the new variable produces a fit comparable with the standard methodology based on a set of polynomial contrasts. Two variants of the present approach have been developed, one in each of the next references: Azzalini (2023) <doi:10.1002/sta4.624>, (2024) <doi:10.48550/arXiv.2406.15933>
.
This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. Reliability indicators such as reliability, maintainability, availability, BMP-failure rate, RG-failure rate, mean time to failure and mean time to repair are available as well. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.
Data Sets for Kumar and Petersen (2012). Statistical Methods in Customer Relationship Management, Wiley: New York.
Implementation of the structural model for variances in order to detect differentially expressed genes from gene expression data.
This tool generates high number of both single- and multi-objective test functions. These functions are frequently used for the benchmarking of (numerical) optimization algorithms. Moreover, it offers a set of convenient functions to generate, plot and work with objective functions.
Code and data for modelling and simulation of stochastic kinetic biochemical network models. It contains the code and data associated with the second and third editions of the book Stochastic Modelling for Systems Biology, published by Chapman & Hall/CRC Press.
Cluster user-supplied somatic read counts with corresponding allele-specific copy number and tumor purity to infer feasible underlying intra-tumor heterogeneity in terms of number of subclones, multiplicity, and allocation (Little et al. (2019) <doi:10.1186/s13073-019-0643-9>).