This package provides functionalities to build and manipulate probability distributions of the skew-normal family and some related ones, notably the skew-t family, and provides related statistical methods for data fitting and diagnostics, in the univariate and the multivariate case.
Computes Strongest Neighbor Coherence (SNC), a structural diagnostic that replaces Cronbach's alpha using top-k correlation structure. For methodology, see Wells (2025) <https://github.com/TheotherDrWells/snc>
.
This package provides a range of tools for social network analysis, including node and graph-level indices, structural distance and covariance methods, structural equivalence detection, network regression, random graph generation, and 2D/3D network visualization.
Implement K-nearest neighbor classifier, weighted nearest neighbor classifier, bagged nearest neighbor classifier, optimal weighted nearest neighbor classifier and stabilized nearest neighbor classifier, and perform model selection via 5 fold cross-validation for them. This package also provides functions for computing the classification error and classification instability of a classification procedure.
Stochastic Newton Sampler (SNS) is a Metropolis-Hastings-based, Markov Chain Monte Carlo sampler for twice differentiable, log-concave probability density functions (PDFs) where the proposal density function is a multivariate Gaussian resulting from a second-order Taylor-series expansion of log-density around the current point. The mean of the Gaussian proposal is the full Newton-Raphson step from the current point. A Boolean flag allows for switching from SNS to Newton-Raphson optimization (by choosing the mean of proposal function as next point). This can be used during burn-in to get close to the mode of the PDF (which is unique due to concavity). For high-dimensional densities, mixing can be improved via state space partitioning strategy, in which SNS is applied to disjoint subsets of state space, wrapped in a Gibbs cycle. Numerical differentiation is available when analytical expressions for gradient and Hessian are not available. Facilities for validation and numerical differentiation of log-density are provided. Note: Formerly available versions of the MfUSampler
can be obtained from the archive <https://cran.r-project.org/src/contrib/Archive/MfUSampler/>
.
Efficient estimation of multivariate skew-normal distribution in closed form.
This package provides a simple wrapper to easily design vanilla deep neural networks using Tensorflow'/'Keras backend for regression, classification and multi-label tasks, with some tweaks and tricks (skip shortcuts, embedding, feature selection and anomaly detection).
Create correlation networks using St. Nicolas House Analysis ('SNHA'). The package can be used for visualizing multivariate data similar to Principal Component Analysis or Multidimensional Scaling using a ranking approach. In contrast to MDS and PCA', SNHA uses a network approach to explore interacting variables. For details see Hermanussen et. al. 2021', <doi:10.3390/ijerph18041741>.
The snow package provides support for simple parallel computing on a network of workstations using R. A master R process calls makeCluster
to start a cluster of worker processes; the master process then uses functions such as clusterCall
and clusterApply
to execute R code on the worker processes and collect and return the results on the master.
Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
This package implements snake in R as a programming example, see <https://en.wikipedia.org/wiki/Snake_(video_game_genre)>.
Implementations self-normalization (SN) based algorithms for change-points estimation in time series data. This comprises nested local-window algorithms for detecting changes in both univariate and multivariate time series developed in Zhao, Jiang and Shao (2022) <doi:10.1111/rssb.12552>.
This package provides a spectral framework to map quantitative trait loci (QTLs) affecting joint differential networks of gene co-Expression. Test the equivalence among multiple biological networks via spectral statistics. See reference Hu, J., Weber, J. N., Fuess, L. E., Steinel, N. C., Bolnick, D. I., & Wang, M. (2025) <doi:10.1371/journal.pcbi.1012953>.
This package provides tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores.
Extension of the snow package supporting fault tolerant and reproducible applications, as well as supporting easy-to-use parallel programming - only one function is needed. Dynamic cluster size is also available.
Easily calculate precession and obliquity from an orbital solution (defaults to ZB18a from Zeebe and Lourens (2019) <doi:10.1126/science.aax0612>) and assumed or reconstructed values for tidal dissipation (Td) and dynamical ellipticity (Ed). This is a translation and adaptation of the C'-code in the supplementary material to Zeebe and Lourens (2022) <doi:10.1029/2021PA004349>, with further details on the methodology described in Zeebe (2022) <doi:10.3847/1538-3881/ac80f8>. The name of the C'-routine is snvec', which refers to the key units of computation: spin vector s and orbit normal vector n.
This package provides a set of functions to create SQL tables of gene and SNP information and compose them into a SNP Set, for example to export to a PLINK set.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
Similarity Network Fusion takes multiple views of a network and fuses them together to construct an overall status matrix. The input to our algorithm can be feature vectors, pairwise distances, or pairwise similarities. The learned status matrix can then be used for retrieval, clustering, and classification.
Programmatic interface to the SNOTEL snow data (<https://www.nrcs.usda.gov/programs-initiatives/sswsf-snow-survey-and-water-supply-forecasting-program>). Provides easy downloads of snow data into your R work space or a local directory. Additional post-processing routines to extract snow season indexes are provided.
Download data (tables and datasets) from the Swiss National Bank (SNB; <https://www.snb.ch/en>), the Swiss central bank. The package is lightweight and comes with few dependencies; suggested packages are used only if data is to be transformed into particular data structures, for instance into zoo objects. Downloaded data can optionally be cached, to avoid repeated downloads of the same files.
Consolidated data simulation, sample size calculation and analysis functions for several snSMART
(small sample sequential, multiple assignment, randomized trial) designs under one library. See Wei, B., Braun, T.M., Tamura, R.N. and Kidwell, K.M. "A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs
)." (2018) Statistics in medicine, 37(26), pp.3723-3732 <doi:10.1002/sim.7900>.
This package provides classes and statistical methods for large single-nucleotide polymorphism (SNP) association studies. This extends the earlier snpMatrix package, allowing for uncertainty in genotypes.
This package provides historical datasets related to John Snow's 1854 cholera outbreak study in London. Includes data on cholera cases, water pump locations, and the street layout, enabling analysis and visualisation of the outbreak.