Design and use of control charts for detecting mean changes based on a delayed updating of the in-control parameter estimates. See Capizzi and Masarotto (2019) <doi:10.1080/00224065.2019.1640096> for the description of the method.
Datasets and workflows for Cardinal: DESI and MALDI examples including pig fetus, cardinal painting, and human RCC.
Plots calibration curves and computes statistics for assessing calibration performance. See De Cock Campo (2023) <doi:10.48550/arXiv.2309.08559>
and Van Calster et al. (2016) <doi:10.1016/j.jclinepi.2015.12.005>.
Simple, fast, and automatic encodings for category data using a data.table backend. Most of the methods are an implementation of "Sufficient Representation for Categorical Variables" by Johannemann, Hadad, Athey, Wager (2019) <arXiv:1908.09874>
, particularly their mean, sparse principal component analysis, low rank representation, and multinomial logit encodings.
This package contains the prepared data that is needed for the shiny application examples in the canvasXpress
package. This package also includes datasets used for automated testthat tests. Scotto L, Narayan G, Nandula SV, Arias-Pulido H et al. (2008) <doi:10.1002/gcc.20577>. Davis S, Meltzer PS (2007) <doi:10.1093/bioinformatics/btm254>.
Arithmetic operations scalar multiplication, addition, subtraction, multiplication and division of LR fuzzy numbers (which are on the basis of extension principle) have a complicate form for using in fuzzy Statistics, fuzzy Mathematics, machine learning, fuzzy data analysis and etc. Calculator for LR Fuzzy Numbers package relieve and aid applied users to achieve a simple and closed form for some complicated operator based on LR fuzzy numbers and also the user can easily draw the membership function of the obtained result by this package.
Case-based reasoning is a problem-solving methodology that involves solving a new problem by referring to the solution of a similar problem in a large set of previously solved problems. The key aspect of Case Based Reasoning is to determine the problem that "most closely" matches the new problem at hand. This is achieved by defining a family of distance functions and using these distance functions as parameters for local averaging regression estimates of the final result. The optimal distance function is chosen based on a specific error measure used in regression estimation. This approach allows for efficient problem-solving by leveraging past experiences and adapting solutions from similar cases. The underlying concept is inspired by the work of Dippon J. (2002) <doi:10.1016/S0167-9473(02)00058-0>.
Cox model inference for relative hazard and covariate-specific pure risk estimated from stratified and unstratified case-cohort data as described in Etievant, L., Gail, M.H. (Lifetime Data Analysis, 2024) <doi:10.1007/s10985-024-09621-2>.
Generates tree plots with precise branch lengths, gene annotations, and cellular prevalence. The package handles complex tree structures (angles, lengths, etc.) and can be further refined as needed by the user.