Up-to-date data from the Unicode CLDR Project (where CLDR stands for Common Locale Data Repository') are available here as a series of easy-to-parse datasets. Several functions are provided for extracting key elements from the tabular datasets.
This package provides functions for the longitudinal genetic random field method (He et al., 2015, <doi:10.1111/biom.12310>) to test the association between a longitudinally measured quantitative outcome and a set of genetic variants in a gene/region.
Read, inspect and process corpus files for quantitative corpus linguistics. Obtain concordances via regular expressions, tokenize texts, and compute frequencies and association measures. Useful for collocation analysis, keywords analysis and variationist studies (comparison of linguistic variants and of linguistic varieties).
This package contains functions to access movement data stored in movebank.org as well as tools to visualize and statistically analyze animal movement data, among others functions to calculate dynamic Brownian Bridge Movement Models. Move helps addressing movement ecology questions.
This package provides tools for working with the National Hydrography Dataset, with functions for querying, downloading, and networking both the NHD <https://www.usgs.gov/national-hydrography> and NHDPlus <https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus> datasets.
R Interface to ONNX - Open Neural Network Exchange <https://onnx.ai/>. ONNX provides an open source format for machine learning models. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types.
Allows to perform the tests of equal predictive accuracy for panels of forecasts. Main references: Qu et al. (2024) <doi:10.1016/j.ijforecast.2023.08.001> and Akgun et al. (2024) <doi:10.1016/j.ijforecast.2023.02.001>.
This package provides a cohesive framework for the spectral and spatial analysis of colour described in Maia, Eliason, Bitton, Doucet & Shawkey (2013) <doi:10.1111/2041-210X.12069> and Maia, Gruson, Endler & White (2019) <doi:10.1111/2041-210X.13174>.
Creates, manipulates, queries and repairs vectors of parameter terms. Parameter terms are the labels used to reference values in vectors, matrices and arrays. They represent the names in coefficient tables and the column names in mcmc and mcmc.list objects.
This package provides a parser for mzIdentML files implemented using the XML package. The parser tries to be general and able to handle all types of mzIdentML files with the drawback of having less pretty output than a vendor specific parser.
This package provides fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the Eigen C++ library for numerical linear algebra and RcppEigen glue.
This package provides an SCSS compiler, powered by the libsass library. With this, R developers can use variables, inheritance, and functions to generate dynamic style sheets. The package uses the Sass CSS extension language, which is stable, powerful, and CSS compatible.
Recoll finds documents based on their contents as well as their file names. It can search most document formats, but you may need external applications for text extraction. It can reach any storage place: files, archive members, email attachments, transparently handling decompression.
This package provides a set of functions to perform pathway analysis and meta-analysis from multiple gene expression datasets, as well as visualization of the results. This package wraps functionality from the following packages: Ritchie et al. (2015) <doi:10.1093/nar/gkv007>, Love et al. (2014) <doi:10.1186/s13059-014-0550-8>, Robinson et al. (2010) <doi:10.1093/bioinformatics/btp616>, Korotkevich et al. (2016) <arxiv:10.1101/060012>, Efron et al. (2015) <https://CRAN.R-project.org/package=GSA>, and Gu et al. (2012) <https://CRAN.R-project.org/package=CePa>
.
Non CRAN update of the evolutionary model-based multiresponse approach (EMMA) is a novel methodology to process optimisation and product improvement. The approach is suitable to contexts in which the experimental cost and/or time limit the number of implementable trials.
Convert several png files into an animated png file. This package exports only a single function `apng'. Call the apng function with a vector of file names (which should be png files) to convert them to a single animated png file.
This package implements the allan variance and allan variance linear regression estimator for latent time series models. More details about the method can be found, for example, in Guerrier, S., Molinari, R., & Stebler, Y. (2016) <doi:10.1109/LSP.2016.2541867>.
This package provides functions for summarizing and plotting the output of the command-line tool BeXY
(<https://bitbucket.org/wegmannlab/bexy>), a tool that performs Bayesian inference of sex chromosome karyotypes and sex-linked scaffolds from low-depth sequencing data.
Several functions, datasets, and sample codes related to empirical research in economics are included. They cover the marginal effects for binary or ordered choice models, static and dynamic Almost Ideal Demand System (AIDS) models, and a typical event analysis in finance.
Group method of data handling (GMDH) - type neural network algorithm is the heuristic self-organization method for modelling the complex systems. In this package, GMDH-type neural network algorithms are applied to make short term forecasting for a univariate time series.
This package provides tools to extract information from the Intergovernmental Organizations ('IGO') Database , version 3, provided by the Correlates of War Project <https://correlatesofwar.org/>. See also Pevehouse, J. C. et al. (2020). Version 3 includes information from 1815 to 2014.
Use R to make requests to the US Census Bureau's International Data Base API. Results are returned as R data frames. For more information about the IDB API, visit <https://www.census.gov/data/developers/data-sets/international-database.html>.
Fits joint species distribution models ('jSDM
') in a hierarchical Bayesian framework (Warton and al. 2015 <doi:10.1016/j.tree.2015.09.007>). The Gibbs sampler is written in C++'. It uses Rcpp', Armadillo and GSL to maximize computation efficiency.
An implementation of the blocking algorithm KLSH in Steorts, Ventura, Sadinle, Fienberg (2014) <DOI:10.1007/978-3-319-11257-2_20>, which is a k-means variant of locality sensitive hashing. The method is illustrated with examples and a vignette.