Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Density computation, random matrix generation and maximum likelihood estimation of the matrix normal distribution. References: Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. <doi:10.48550/arXiv.1910.02859> and the relevant wikipedia page.
Generates Raven like matrices according to different rules and the response list associated to the matrix. The package can generate matrices composed of 4 or 9 cells, along with a response list of 11 elements (the correct response + 10 incorrect responses). The matrices can be generated according to both logical rules (i.e., the relationships between the elements in the matrix are manipulated to create the matrix) and visual-spatial rules (i.e., the visual or spatial characteristics of the elements are manipulated to generate the matrix). The graphical elements of this package are based on the DescTools package. This package has been developed within the PRIN2020 Project (Prot. 20209WKCLL) titled "Computerized, Adaptive and Personalized Assessment of Executive Functions and Fluid Intelligence" and founded by the Italian Ministry of Education and Research.
Fitting recurrent events survival models for left-censored data with multiple imputation of the number of previous episodes. See Hernández-Herrera G, Moriña D, Navarro A. (2020) <arXiv:2007.15031>.
Given a set of models for which a measure of model (mis)fit and model complexity is provided, CHull(), developed by Ceulemans and Kiers (2006) <doi:10.1348/000711005X64817>, determines the models that are located on the boundary of the convex hull and selects an optimal model by means of the scree test values.
This package provides a web-based graphical user interface to provide the basic steps of a machine learning workflow. It uses the functionalities of the mlr3 framework.
Discover OpenID Connect endpoints and authenticate using device flow. Used by MOLGENIS packages.
Statistical Analyses and Pooling after Multiple Imputation. A large variety of repeated statistical analysis can be performed and finally pooled. Statistical analysis that are available are, among others, Levene's test, Odds and Risk Ratios, One sample proportions, difference between proportions and linear and logistic regression models. Functions can also be used in combination with the Pipe operator. More and more statistical analyses and pooling functions will be added over time. Heymans (2007) <doi:10.1186/1471-2288-7-33>. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>. Sidi (2021) <doi:10.1080/00031305.2021.1898468>. Lott (2018) <doi:10.1080/00031305.2018.1473796>. Grund (2021) <doi:10.31234/osf.io/d459g>.
Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.
Suite of interactive functions and helpers for selecting and editing geospatial data.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software Stan'. References: Clark & Wells (2023) <doi:10.1111/2041-210X.13974>.
Fully parametric Bayesian multiple imputation framework for massive multivariate data of different variable types as seen in Demirtas, H. (2017) <doi:10.1007/978-981-10-3307-0_8>.
Developed for computing the probability density function, computing the cumulative distribution function, computing the quantile function, random generation, drawing q-q plot, and estimating the parameters of 24 G-family of statistical distributions via the maximum product spacing approach introduced in <https://www.jstor.org/stable/2345411>. The set of families contains: beta G distribution, beta exponential G distribution, beta extended G distribution, exponentiated G distribution, exponentiated exponential Poisson G distribution, exponentiated generalized G distribution, exponentiated Kumaraswamy G distribution, gamma type I G distribution, gamma type II G distribution, gamma uniform G distribution, gamma-X generated of log-logistic family of G distribution, gamma-X family of modified beta exponential G distribution, geometric exponential Poisson G distribution, generalized beta G distribution, generalized transmuted G distribution, Kumaraswamy G distribution, log gamma type I G distribution, log gamma type II G distribution, Marshall Olkin G distribution, Marshall Olkin Kumaraswamy G distribution, modified beta G distribution, odd log-logistic G distribution, truncated-exponential skew-symmetric G distribution, and Weibull G distribution.
An interactive presentation on the topic of Multinomial Logistic Regression. It is helpful to those who want to learn Multinomial Logistic Regression quickly and get a hands on experience. The presentation has a template for solving problems on Multinomial Logistic Regression. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/MultinomPresentation>.
This package provides functions to read in and manipulate air quality model output from Models3-formatted files. This format is used by the Community Multiscale Air Quality (CMAQ) model.
Supports Bayesian models with full and partial (hence arbitrary) dependencies between random variables. Discrete and continuous variables are supported, and conditional joint probabilities and probability densities are estimated using Kernel Density Estimation (KDE). The full general form, which implements an extension to Bayes theorem, as well as the simple form, which is just a Bayesian network, both support regression through segmentation and KDE and estimation of probability or relative likelihood of discrete or continuous target random variables. This package also provides true statistical distance measures based on Bayesian models. Furthermore, these measures can be facilitated on neighborhood searches, and to estimate the similarity and distance between data points. Related work is by Bayes (1763) <doi:10.1098/rstl.1763.0053> and by Scutari (2010) <doi:10.18637/jss.v035.i03>.
An implementation of modified maximum contrast methods (Sato et al. (2009) <doi:10.1038/tpj.2008.17>; Nagashima et al. (2011) <doi:10.2202/1544-6115.1560>) and the maximum contrast method (Yoshimura et al. (1997) <doi:10.1177/009286159703100213>): Functions mmcm.mvt() and mcm.mvt() give P-value by using randomized quasi-Monte Carlo method with pmvt() function of package mvtnorm', and mmcm.resamp() gives P-value by using a permutation method.
Curve Fitting of monotonic(sigmoidal) & non-monotonic(J-shaped) dose-response data. Predicting mixture toxicity based on reference models such as concentration addition', independent action', and generalized concentration addition'.
Econometric analysis of multiple-input-multiple-output production technologies with ray-based input distance functions as suggested by Price and Henningsen (2022): "A Ray-Based Input Distance Function to Model Zero-Valued Output Quantities: Derivation and an Empirical Application", <https://ideas.repec.org/p/foi/wpaper/2022_03.html>.
Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.
Procedures for simulating biomes by equilibrium vegetation models, with a special focus on paleoenvironmental applications. Three widely used equilibrium biome models are currently implemented in the package: the Holdridge Life Zone (HLZ) system (Holdridge 1947, <doi:10.1126/science.105.2727.367>), the Köppen-Geiger classification (KGC) system (Köppen 1936, <https://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1936.pdf>) and the BIOME model (Prentice et al. 1992, <doi:10.2307/2845499>). Three climatic forest-steppe models are also implemented. An approach for estimating monthly time series of relative sunshine duration from temperature and precipitation data (Yin 1999, <doi:10.1007/s007040050111>) is also adapted, allowing process-based biome models to be combined with high-resolution paleoclimate simulation datasets (e.g., CHELSA-TraCE21k v1.0 dataset: <https://chelsa-climate.org/chelsa-trace21k/>).
This package provides supplemental functions for the mixRasch package (Willse, 2014), <https://cran.r-project.org/package=mixRasch/mixRasch.pdf> including a plotting function to compare item parameters for multiple class models and a function that provides average theta values for each class in a mixture model.
Website generator with HTML summaries for predictive models. This package uses DALEX explainers to describe global model behavior. We can see how well models behave (tabs: Model Performance, Auditor), how much each variable contributes to predictions (tabs: Variable Response) and which variables are the most important for a given model (tabs: Variable Importance). We can also compare Concept Drift for pairs of models (tabs: Drifter). Additionally, data available on the website can be easily recreated in current R session. Work on this package was financially supported by the NCN Opus grant 2017/27/B/ST6/01307 at Warsaw University of Technology, Faculty of Mathematics and Information Science.
Package for combined miRNA- and mRNA-testing.