This package provides functions for differential chromatin interaction analysis between two single-cell Hi-C data groups. It includes tools for imputation, normalization, and differential analysis of chromatin interactions. The package implements pooling techniques for imputation and offers methods to normalize and test for differential interactions across single-cell Hi-C datasets.
The package contains local copy of the Synaptic proteome database. On top of this it provide a set of utility R functions to query and analyse its content. It allows extraction of information for specific genes and building the protein-protein interaction graph for gene sets, synaptic compartments, and brain regions.
Emacs Org Roam is a solution for taking non-hierarchical notes with Org mode. Notes are captured without hierarchy and are connected by tags. Notes can be found and created quickly. Org Roam should also work as a plug-and-play solution for anyone already using Org mode for their personal wiki.
The pip-run command provides on-demand temporary package installation for a single interpreter run. It replaces this series of commands:
$ virtualenv --python pythonX.X --system-site-packages /tmp/env $ /tmp/env/bin/pip install pkg1 pkg2 -r reqs.txt $ /tmp/env/bin/python ... $ rm -rf /tmp/env
scheme-json-rpc allows calling procedures on remote servers by exchanging JSON objects. It implements the https://www.jsonrpc.org/specification. The low-level API strives to be R7RS compliant, relying on some SRFI's when needed. So far it was only tested under CHICKEN 5 and Guile 3.
Guile is the GNU Ubiquitous Intelligent Language for Extensions, the official extension language of the GNU system. It is an implementation of the Scheme language which can be easily embedded in other applications to provide a convenient means of extending the functionality of the application without requiring the source code to be rewritten.
Given an expression matrix from a bulk sequencing experiment, pre-processes it and creates a shiny app for interactive data analysis and visualisation. The app contains quality checks, differential expression analysis, volcano and cross plots, enrichment analysis and gene regulatory network inference, and can be customised to contain more panels by the user.
Bagging bandwidth selection methods for the Parzen-Rosenblatt and Nadaraya-Watson estimators. These bandwidth selectors can achieve greater statistical precision than their non-bagged counterparts while being computationally fast. See Barreiro-Ures et al. (2020) <doi:10.1093/biomet/asaa092> and Barreiro-Ures et al. (2021) <doi:10.48550/arXiv.2105.04134>.
Uses non-linear regression to statistically compare two circadian rhythms. Groups are only compared if both are rhythmic (amplitude is non-zero). Performs analyses regarding mesor, phase, and amplitude, reporting on estimates and statistical differences, for each, between groups. Details can be found in Parsons et al (2020) <doi:10.1093/bioinformatics/btz730>.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
Simple feature stores and tools for creating personalised feature stores. diseasystore powers feature stores which can automatically link and aggregate features to a given stratification level. These feature stores are automatically time-versioned (powered by the SCDB package) and allows you to easily and dynamically compute features as part of your continuous integration.
Constructs dynamic optimal shrinkage estimators for the weights of the global minimum variance portfolio which are reconstructed at given reallocation points as derived in Bodnar, Parolya, and Thorsén (2021) (<arXiv:2106.02131>). Two dynamic shrinkage estimators are available in this package. One using overlapping samples while the other use nonoverlapping samples.
An index measuring the amount of information brought by forecasts for extreme events, subject to calibration, is computed. This index is originally designed for weather or climate forecasts, but it may be used in other forecasting contexts. This is the implementation of the index in Taillardat et al. (2019) <arXiv:1905.04022>.
Authentication can be the most difficult part about working with a new API. ibmAcousticR facilitates making a connection to the IBM Acoustic email campaign management API and executing various queries. The IBM Acoustic API documentation is available at <https://developer.ibm.com/customer-engagement/docs/>. This package is not supported by IBM'.
Fit different model forms to single-cohort litter decomposition data (mass remaining through time) using likelihood-based estimation. Models span simple empirical to process-motivated forms with differing numbers of free parameters. Provides parameter estimates, uncertainty, and tools for model comparison/selection. Based on Cornwell & Weedon (2013) <doi:10.1111/2041-210X.12138>.
This package provides a graphical display of results from network meta-analysis (NMA). It is suitable for outcomes like odds ratio (OR), risk ratio (RR), risk difference (RD) and standardized mean difference (SMD). It also has an option to visually display and compare the surface under the cumulative ranking (SUCRA) of different treatments.
Analyze spatial phylogenetic diversity patterns. Use your data on an evolutionary tree and geographic distributions of the terminal taxa to compute diversity and endemism metrics, test significance with null model randomization, analyze community turnover and biotic regionalization, and perform spatial conservation prioritizations. All functions support quantitative community data in addition to binary data.
Syntax for defining complex filtering expressions in a programmatic way. A filtering query, built as a nested list configuration, can be easily stored in other formats like YAML or JSON'. What's more, it's possible to convert such configuration to a valid expression that can be applied to popular dplyr package operations.
Perform survival simulation with parametric survival model generated from survreg function in survival package. In each simulation coefficients are resampled from variance-covariance matrix of parameter estimates to capture uncertainty in model parameters. Prediction intervals of Kaplan-Meier estimates and hazard ratio of treatment effect can be further calculated using simulated survival data.
Compute the position of the sun, and local solar time using Meeus formulae. Compute day and/or night length using different twilight definitions or arbitrary sun elevation angles. This package is part of the r4photobiology suite, Aphalo, P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>. Algorithms from Meeus (1998, ISBN:0943396611).
This package provides functions for stratified sampling and assigning custom labels to data, ensuring randomness within groups. The package supports various sampling methods such as stratified, cluster, and systematic sampling. It allows users to apply transformations and customize the sampling process. This package can be useful for statistical analysis and data preparation tasks.
This package provides triangulations of regular height fields, based on the methods described in "Fast Polygonal Approximation of Terrains and Height Fields" Michael Garland and Paul S. Heckbert (1995) <https://www.mgarland.org/files/papers/scape.pdf> using code from the hmm library written by Michael Fogleman <https://www.github.com/fogleman/hmm>.
Additive hazards models with two stage residual inclusion method are fitted under either survival data or competing risks data. The estimator incorporates an instrumental variable and therefore can recover causal estimand in the presence of unmeasured confounding under some assumptions. A.Ying, R. Xu and J. Murphy. (2019) <doi:10.1002/sim.8071>.
Fits time-dependent shared frailty Cox model (specifically the adapted Paik et al.'s Model) based on the paper "Centre-Effect on Survival After Bone Marrow Transplantation: Application of Time-Dependent Frailty Models", by C.M. Wintrebert, H. Putter, A.H. Zwinderman and J.C. van Houwelingen (2004) <doi:10.1002/bimj.200310051>.