Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a data generator of multivariate non-normal data in R. It combines two different methods to generate non-normal data, one with user-specified multivariate skewness and kurtosis (more details can be found in the paper: Qu, Liu, & Zhang, 2019 <doi:10.3758/s13428-019-01291-5>), and the other with the given marginal skewness and kurtosis. The latter one is the widely-used Vale and Maurelli's method. It also contains a function to calculate univariate and multivariate (Mardia's Test) skew and kurtosis.
Perform missing value imputation for biological data using the random forest algorithm, the imputation aim to keep the original mean and standard deviation consistent after imputation.
An implementation of popular screening methods that are commonly employed in ultra-high and high dimensional data. Through this publicly available package, we provide a unified framework to carry out model-free screening procedures including SIS (Fan and Lv (2008) <doi:10.1111/j.1467-9868.2008.00674.x>), SIRS (Zhu et al. (2011)<doi:10.1198/jasa.2011.tm10563>), DC-SIS (Li et al. (2012) <doi:10.1080/01621459.2012.695654>), MDC-SIS (Shao and Zhang (2014) <doi:10.1080/01621459.2014.887012>), Bcor-SIS (Pan et al. (2019) <doi:10.1080/01621459.2018.1462709>), PC-Screen (Liu et al. (2020) <doi:10.1080/01621459.2020.1783274>), WLS (Zhong et al.(2021) <doi:10.1080/01621459.2021.1918554>), Kfilter (Mai and Zou (2015) <doi:10.1214/14-AOS1303>), MVSIS (Cui et al. (2015) <doi:10.1080/01621459.2014.920256>), PSIS (Pan et al. (2016) <doi:10.1080/01621459.2014.998760>), CAS (Xie et al. (2020) <doi:10.1080/01621459.2019.1573734>), CI-SIS (Cheng and Wang. (2023) <doi:10.1016/j.cmpb.2022.107269>) and CSIS (Cheng et al. (2023) <doi:10.1007/s00180-023-01399-5>).
MatLab'-Style Modeling of Optimization Problems with R'. This package provides a set of convenience functions to transform a MatLab'-style optimization modeling structure to its ROI equivalent.
This package provides tools for data analysis with multivariate Bayesian structural time series (MBSTS) models. Specifically, the package provides facilities for implementing general structural time series models, flexibly adding on different time series components (trend, season, cycle, and regression), simulating them, fitting them to multivariate correlated time series data, conducting feature selection on the regression component.
This package provides a suite of tools for transforming an existing workflow into a self-documenting pipeline with very minimal upfront costs. Segments of the pipeline are specified in much the same way a Make rule is, by declaring an executable recipe (which might be an R script), along with the corresponding targets and dependencies. When the entire pipeline is run through, only those recipes that need to be executed will be. Meanwhile, execution metadata is captured behind the scenes for later inspection.
This package provides a set of tools to perform multiple versions of the Mobility Oriented-Parity metric. This multivariate analysis helps to characterize levels of dissimilarity between a set of conditions of reference and another set of conditions of interest. If predictive models are transferred to conditions different from those over which models were calibrated (trained), this metric helps to identify transfer conditions that differ substantially from those of calibration. These tools are implemented following principles proposed in Owens et al. (2013) <doi:10.1016/j.ecolmodel.2013.04.011>, and expanded to obtain more detailed results that aid in interpretation as in Cobos et al. (2024) <doi:10.21425/fob.17.132916>.
Biodiversity areas, especially primary forest, serve a multitude of functions for local economy, regional functionality of the ecosystems as well as the global health of our planet. Recently, adverse changes in human land use practices and climatic responses to increased greenhouse gas emissions, put these biodiversity areas under a variety of different threats. The present package helps to analyse a number of biodiversity indicators based on freely available geographical datasets. It supports computational efficient routines that allow the analysis of potentially global biodiversity portfolios. The primary use case of the package is to support evidence based reporting of an organization's effort to protect biodiversity areas under threat and to identify regions were intervention is most duly needed.
An implementation of the additive (Gurevitch et al., 2000 <doi:10.1086/303337>) and multiplicative (Lajeunesse, 2011 <doi:10.1890/11-0423.1>) factorial null models for multiple stressor data (Burgess et al., 2021 <doi:10.1101/2021.07.21.453207>). Effect sizes are able to be calculated for either null model, and subsequently classified into one of four different interaction classifications (e.g., antagonistic or synergistic interactions). Analyses can be conducted on data for single experiments through to large meta-analytical datasets. Minimal input (or statistical knowledge) is required, with any output easily understood. Summary figures are also able to be easily generated.
Fits a geographically weighted regression model with different scales for each covariate. Uses the negative binomial distribution as default, but also accepts the normal, Poisson, or logistic distributions. Can fit the global versions of each regression and also the geographically weighted alternatives with only one scale, since they are all particular cases of the multiscale approach. Hanchen Yu (2024). "Exploring Multiscale Geographically Weighted Negative Binomial Regression", Annals of the American Association of Geographers <doi:10.1080/24694452.2023.2289986>. Fotheringham AS, Yang W, Kang W (2017). "Multiscale Geographically Weighted Regression (MGWR)", Annals of the American Association of Geographers <doi:10.1080/24694452.2017.1352480>. Da Silva AR, Rodrigues TCV (2014). "Geographically Weighted Negative Binomial Regression - incorporating overdispersion", Statistics and Computing <doi:10.1007/s11222-013-9401-9>.
Selects matched samples of the original treated and control groups with similar covariate distributions -- can be used to match exactly on covariates, to match on propensity scores, or perform a variety of other matching procedures. The package also implements a series of recommendations offered in Ho, Imai, King, and Stuart (2007) <DOI:10.1093/pan/mpl013>. (The gurobi package, which is not on CRAN, is optional and comes with an installation of the Gurobi Optimizer, available at <https://www.gurobi.com>.).
This package provides sample data sets that are used in statistics and data science courses at the Münster School of Business. The datasets refer to different business topics but also other domains, e.g. sports, traffic, etc.
This package implements a computational framework to predict microbial community-based metabolic profiles with O2PLS model. It provides procedures of model training and prediction. Paired microbiome and metabolome data are needed for modeling, and the trained model can be applied to predict metabolites of analogous environments using new microbial feature abundances.
Calculate different metrics based on aquatic macroinvertebrate density data (individuals per square meter) to assess water quality (Prat N et al. 2009).
Model fitting and simulation for Gaussian and logistic inner product MultiNeSS models for multiplex networks. The package implements a convex fitting algorithm with fully adaptive parameter tuning, including options for edge cross-validation. For more details see MacDonald et al. (2020).
Programmatic interface to the Oak Ridge National Laboratories MODIS Land Products Subsets web services (<https://modis.ornl.gov/data/modis_webservice.html>). Allows for easy downloads of MODIS time series directly to your R workspace or your computer.
This package implements Multi-Group Sparse Discriminant Analysis proposal of I.Gaynanova, J.Booth and M.Wells (2016), Simultaneous sparse estimation of canonical vectors in the p>>N setting, JASA <doi:10.1080/01621459.2015.1034318>.
According to a phenomenon known as "the wisdom of the crowds," combining point estimates from multiple judges often provides a more accurate aggregate estimate than using a point estimate from a single judge. However, if the judges use shared information in their estimates, the simple average will over-emphasize this common component at the expense of the judgesâ private information. Asa Palley & Ville Satopää (2021) "Boosting the Wisdom of Crowds Within a Single Judgment Problem: Selective Averaging Based on Peer Predictions" <https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3504286> proposes a procedure for calculating a weighted average of the judgesâ individual estimates such that resulting aggregate estimate appropriately combines the judges collective information within a single estimation problem. The authors use both simulation and data from six experimental studies to illustrate that the weighting procedure outperforms existing averaging-like methods, such as the equally weighted average, trimmed average, and median. This aggregate estimate -- know as "the knowledge-weighted estimate" -- inputs a) judges estimates of a continuous outcome (E) and b) predictions of others average estimate of this outcome (P). In this R-package, the function knowledge_weighted_estimate(E,P) implements the knowledge-weighted estimate. Its use is illustrated with a simple stylized example and on real-world experimental data.
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the premier technology for profiling genome-wide localization of chromatin-binding proteins, including transcription factors and histones with various modifications. This package provides a robust method for normalizing ChIP-seq signals across individual samples or groups of samples. It also designs a self-contained system of statistical models for calling differential ChIP-seq signals between two or more biological conditions as well as for calling hypervariable ChIP-seq signals across samples. Refer to Tu et al. (2021) <doi:10.1101/gr.262675.120> and Chen et al. (2022) <doi:10.1186/s13059-022-02627-9> for associated statistical details.
Conducts one- and two-sample hypothesis tests for median absolute deviations (mads) for robust inference of dispersion. Comparisons between two samples uses the ratio of mads. Confidence intervals are also computed.
Multivariate joint models of longitudinal and time-to-event data based on functional principal components implemented with bamlss'. Implementation for Volkmann, Umlauf, Greven (2023) <arXiv:2311.06409>.
The Self-Organizing Maps with Built-in Missing Data Imputation. Missing values are imputed and regularly updated during the online Kohonen algorithm. Our method can be used for data visualisation, clustering or imputation of missing data. It is an extension of the online algorithm of the kohonen package. The method is described in the article "Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values" by S. Rejeb, C. Duveau, T. Rebafka (2022) <arXiv:2202.07963>.
Michel Rodange was a Luxembourguish writer and poet who lived in the 19th century. His most notable work is Rodange (1872, ISBN:1166177424), ("Renert oder de Fuuà am Frack an a Ma'nsgrëà t"), but he also wrote many more works, including Rodange, Tockert (1928) <https://www.autorenlexikon.lu/page/document/361/3614/1/FRE/index.html> ("D'Léierchen - Dem Léiweckerche säi Lidd") and Rodange, Welter (1929) <https://www.autorenlexikon.lu/page/document/361/3615/1/FRE/index.html> ("Dem Grow Sigfrid seng Goldkuommer"). This package contains three datasets, each made from the plain text versions of his works available on <https://data.public.lu/fr/datasets/the-works-in-luxembourguish-of-michel-rodange/>.
Fit multi-level models with possibly correlated random effects using Markov Chain Monte Carlo simulation. Such models allow smoothing over space and time and are useful in, for example, small area estimation.