Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multi-Dimensional Analysis (MDA) is an adaptation of factor analysis developed by Douglas Biber (1992) <doi:10.1007/BF00136979>. Its most common use is to describe language as it varies by genre, register, and use. This package contains functions for carrying out the calculations needed to describe and plot MDA results: dimension scores, dimension means, and factor loadings.
Straightforward and detailed evaluation of machine learning models. MLeval can produce receiver operating characteristic (ROC) curves, precision-recall (PR) curves, calibration curves, and PR gain curves. MLeval accepts a data frame of class probabilities and ground truth labels, or, it can automatically interpret the Caret train function results from repeated cross validation, then select the best model and analyse the results. MLeval produces a range of evaluation metrics with confidence intervals.
Investigate the evolution of biological processes by capturing evolutionary signatures in transcriptomes (Drost et al. (2018) <doi:10.1093/bioinformatics/btx835>). This package aims to provide a transcriptome analysis environment to quantify the average evolutionary age of genes contributing to a transcriptome of interest.
This package provides a client for interacting with magma', the data warehouse of the UCSF Data Library'. magmaR includes functions for querying and downloading data from magma', in order to enable working with such data in R, as well as for uploading local data to magma'.
Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data. An introduction into mouse-tracking analyses using mousetrap can be found in Wulff, Kieslich, Henninger, Haslbeck, & Schulte-Mecklenbeck (2023) <doi:10.31234/osf.io/v685r> (preprint: <https://osf.io/preprints/psyarxiv/v685r>).
It provides functions to compute the values of different modifications of the Rand and Wallace indices. The indices are used to measure the stability or similarity of two partitions obtained on two different sets of units with a non-empty intercept. Splitting and merging of clusters can (depends on the selected index) have a different effect on the value of the indices. The indices are proposed in Cugmas and Ferligoj (2018) <http://ibmi.mf.uni-lj.si/mz/2018/no-1/Cugmas2018.pdf>.
Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the multivariate MArginal ePIstasis Test ('mvMAPIT') â a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact â thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.
An implementation of the Monte Carlo techniques described in details by Dufour (2006) <doi:10.1016/j.jeconom.2005.06.007> and Dufour and Khalaf (2007) <doi:10.1002/9780470996249.ch24>. The two main features available are the Monte Carlo method with tie-breaker, mc(), for discrete statistics, and the Maximized Monte Carlo, mmc(), for statistics with nuisance parameters.
Calibrate and apply multivariate bias correction algorithms for climate model simulations of multiple climate variables. Three methods described by Cannon (2016) <doi:10.1175/JCLI-D-15-0679.1> and Cannon (2018) <doi:10.1007/s00382-017-3580-6> are implemented â (i) MBC Pearson correlation (MBCp), (ii) MBC rank correlation (MBCr), and (iii) MBC N-dimensional PDF transform (MBCn) â as is the Rank Resampling for Distributions and Dependences (R2D2) method.
Additional documentation, a package vignette and regression tests for package mlt.
This package provides tools and functions to fit a multilevel index of dissimilarity.
This package provides functionality for estimating cross-sectional network structures representing partial correlations while accounting for missing data. Networks are estimated via neighborhood selection or regularization, with model selection guided by information criteria. Missing data can be handled primarily via multiple imputation or a maximum likelihood-based approach, as demonstrated by Nehler and Schultze (2025a) <doi:10.31234/osf.io/qpj35> and Nehler and Schultze (2025b) <doi:10.1080/00273171.2025.2503833>. Deletion-based approaches are also available but play a secondary role.
The algorithms implemented here are used to detect the community structure of a network. These algorithms follow different approaches, but are all based on the concept of modularity maximization.
Multiple moderation analysis for two-instance repeated measures designs, with up to three simultaneous moderators (dichotomous and/or continuous) with additive or multiplicative relationship. Includes analyses of simple slopes and conditional effects at (automatically determined or manually set) values of the moderator(s), as well as an implementation of the Johnson-Neyman procedure for determining regions of significance in single moderator models. Based on Montoya, A. K. (2018) "Moderation analysis in two-instance repeated measures designs: Probing methods and multiple moderator models" <doi:10.3758/s13428-018-1088-6> .
Simulate, manage, visualize, and analyze spatially and temporally explicit datasets of mating potential. Implements methods to calculate synchrony, proximity, and compatibility.Synchrony calculations are based on methods described in Augspurger (1983) <doi:10.2307/2387650>, Kempenaers (1993) <doi:10.2307/3676415>, Ison et al. (2014) <doi:10.3732/ajb.1300065>, and variations on these, as described.
Age-specific mortality rates are estimated and projected using the Kannisto, Lee-Carter and related methods as described in Sevcikova et al. (2016) <doi:10.1007/978-3-319-26603-9_15>.
An implementation of a method for building simultaneous confidence intervals for the probabilities of a multinomial distribution given a set of observations, proposed by Sison and Glaz in their paper: Sison, C.P and J. Glaz. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 90:366-369 (1995). The method is an R translation of the SAS code implemented by May and Johnson in their paper: May, W.L. and W.D. Johnson. Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software 5(6) (2000). Paper and code available at <DOI:10.18637/jss.v005.i06>.
This package creates data with identical statistics (metamers) using an iterative algorithm proposed by Matejka & Fitzmaurice (2017) <DOI:10.1145/3025453.3025912>.
Model selection and averaging for regression, generalized linear models, generalized additive models, graphical models and mixtures, focusing on Bayesian model selection and information criteria (Bayesian information criterion etc.). See Rossell (2025) <doi:10.5281/zenodo.17119597> (see the URL field below for its URL) for a hands-on book describing the methods, examples and suggested citations if you use the package.
Read, inspect and process corpus files for quantitative corpus linguistics. Obtain concordances via regular expressions, tokenize texts, and compute frequencies and association measures. Useful for collocation analysis, keywords analysis and variationist studies (comparison of linguistic variants and of linguistic varieties).
Three estimating equation methods are provided in this package for marginal analysis of longitudinal ordinal data with misclassified responses and covariates. The naive analysis which is solely based on the observed data without adjustment may lead to bias. The corrected generalized estimating equations (GEE2) method which is unbiased requires the misclassification parameters to be known beforehand. The corrected generalized estimating equations (GEE2) with validation subsample method estimates the misclassification parameters based on a given validation set. This package is an implementation of Chen (2013) <doi:10.1002/bimj.201200195>.
This is the core functions needed by the tsmp package. The low level and carefully checked mathematical functions are here. These are implementations of the Matrix Profile concept that was created by CS-UCR <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>.
Implementation of commonly used p-value-based and parametric multiple testing procedures (computation of adjusted p-values and simultaneous confidence intervals) and parallel gatekeeping procedures based on the methodology presented in the book "Multiple Testing Problems in Pharmaceutical Statistics" (edited by Alex Dmitrienko, Ajit C. Tamhane and Frank Bretz) published by Chapman and Hall/CRC Press 2009.
Advanced methods for a valuable quantitative environmental risk assessment using Bayesian inference of survival and reproduction Data. Among others, it facilitates Bayesian inference of the general unified threshold model of survival (GUTS). See our companion paper Baudrot and Charles (2021) <doi:10.21105/joss.03200>, as well as complementary details in Baudrot et al. (2018) <doi:10.1021/acs.est.7b05464> and Delignette-Muller et al. (2017) <doi:10.1021/acs.est.6b05326>.