Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs nonlinear Invariant Causal Prediction to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending Invariant Causal Prediction from Peters, Buehlmann and Meinshausen (2016), <arXiv:1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: Invariant Causal Prediction for Nonlinear Models', <arXiv:1706.08576>.
Calculating the net reclassification improvement (NRI) for risk prediction models with time to event and binary data.
Snow water equivalent is modeled with the process based models delta.snow and HS2SWE and empirical regression, which use relationships between density and diverse at-site parameters. The methods are described in Winkler et al. (2021) <doi:10.5194/hess-25-1165-2021>, Magnusson et al. (2025) <doi:10.1016/j.coldregions.2025.104435>, Guyennon et al. (2019) <doi:10.1016/j.coldregions.2019.102859>, Pistocchi (2016) <doi:10.1016/j.ejrh.2016.03.004>, Jonas et al. (2009) <doi:10.1016/j.jhydrol.2009.09.021> and Sturm et al. (2010) <doi:10.1175/2010JHM1202.1>.
Perform an exploration and a preliminary analysis on the dose- response relationship of nanomaterial toxicity. Several functions are provided for data exploration, including functions for creating a subset of dataset, frequency tables and plots. Inference for order restricted dose- response data is performed by testing the significance of monotonic dose-response relationship, using Williams, Marcus, M, Modified M and Likelihood ratio tests. Several methods of multiplicity adjustment are also provided. Description of the methods can be found in <https://github.com/rahmasarina/dose-response-analysis/blob/main/Methodology.pdf>.
An R-package for calculating sample size of a survival trial with or without cure fractions.
This package provides methods to reduce confounding bias from unmeasured confounders in observational studies of vaccine efficacy using negative control outcomes.
This package performs variable selection in sparse negative binomial GLARMA (Generalised Linear Autoregressive Moving Average) models. For further details we refer the reader to the paper Gomtsyan (2023), <arXiv:2307.00929>.
An efficient unified nonconvex penalized estimation algorithm for Gaussian (linear), binomial Logit (logistic), Poisson, multinomial Logit, and Cox proportional hazard regression models. The unified algorithm is implemented based on the convex concave procedure and the algorithm can be applied to most of the existing nonconvex penalties. The algorithm also supports convex penalty: least absolute shrinkage and selection operator (LASSO). Supported nonconvex penalties include smoothly clipped absolute deviation (SCAD), minimax concave penalty (MCP), truncated LASSO penalty (TLP), clipped LASSO (CLASSO), sparse ridge (SRIDGE), modified bridge (MBRIDGE) and modified log (MLOG). For high-dimensional data (data set with many variables), the algorithm selects relevant variables producing a parsimonious regression model. Kim, D., Lee, S. and Kwon, S. (2018) <arXiv:1811.05061>, Lee, S., Kwon, S. and Kim, Y. (2016) <doi:10.1016/j.csda.2015.08.019>, Kwon, S., Lee, S. and Kim, Y. (2015) <doi:10.1016/j.csda.2015.07.001>. (This research is funded by Julian Virtue Professorship from Center for Applied Research at Pepperdine Graziadio Business School and the National Research Foundation of Korea.).
Species Identification using DNA Barcodes Integrated with Environmental Niche Models.
This package provides a nomogram, which can be carried out in rms package, provides a graphical explanation of a prediction process. However, it is not very easy to draw straight lines, read points and probabilities accurately. Even, it is hard for users to calculate total points and probabilities for all subjects. This package provides formula_rd() and formula_lp() functions to fit the formula of total points with raw data and linear predictors respectively by polynomial regression. Function points_cal() will help you calculate the total points. prob_cal() can be used to calculate the probabilities after lrm(), cph() or psm() regression. For more complex condition, interaction or restricted cubic spine, TotalPoints.rms() can be used.
This R package provides a calculation of between-cases AUC estimate, corresponding covariance, and variance estimate in the nested data problem. Also, the package has the function to simulate the nested data. The calculated between-cases AUC estimate is used to evaluate the reader's diagnostic performance in clinical tasks with nested data. For more details on the above methods, please refer to the paper by H Du, S Wen, Y Guo, F Jin, BD Gallas (2022) <doi:10.1177/09622802221111539>.
This package provides a small package designed for interpreting continuous and categorical latent variables. You provide a data set with a latent variable you want to understand and some other explanatory variables. It provides a description of the latent variable based on the explanatory variables. It also provides a name to the latent variable.
Lite interface for getting data from OSM service Nominatim <https://nominatim.org/release-docs/latest/>. Extract coordinates from addresses, find places near a set of coordinates and return spatial objects on sf format.
In shotgun proteomics, shared peptides (i.e., peptides that might originate from different proteins sharing homology, from different proteoforms due to alternative mRNA splicing, post-translational modifications, proteolytic cleavages, and/or allelic variants) represent a major source of ambiguity in protein identifications. The net4pg package allows to assess and handle ambiguity of protein identifications. It implements methods for two main applications. First, it allows to represent and quantify ambiguity of protein identifications by means of graph connected components (CCs). In graph theory, CCs are defined as the largest subgraphs in which any two vertices are connected to each other by a path and not connected to any other of the vertices in the supergraph. Here, proteins sharing one or more peptides are thus gathered in the same CC (multi-protein CC), while unambiguous protein identifications constitute CCs with a single protein vertex (single-protein CCs). Therefore, the proportion of single-protein CCs and the size of multi-protein CCs can be used to measure the level of ambiguity of protein identifications. The package implements a strategy to efficiently calculate graph connected components on large datasets and allows to visually inspect them. Secondly, the net4pg package allows to exploit the increasing availability of matched transcriptomic and proteomic datasets to reduce ambiguity of protein identifications. More precisely, it implement a transcriptome-based filtering strategy fundamentally consisting in the removal of those proteins whose corresponding transcript is not expressed in the sample-matched transcriptome. The underlying assumption is that, according to the central dogma of biology, there can be no proteins without the corresponding transcript. Most importantly, the package allows to visually inspect the effect of the filtering on protein identifications and quantify ambiguity before and after filtering by means of graph connected components. As such, it constitutes a reproducible and transparent method to exploit transcriptome information to enhance protein identifications. All methods implemented in the net4pg package are fully described in Fancello and Burger (2022) <doi:10.1186/s13059-022-02701-2>.
In semi-structured interviews that use the framework method, it is not always clear how refinements to interview questions affect the decision of when to stop interviews. The trend of novel and duplicate interview codes (novel codes are information that other interviewees have not previously mentioned) provides insight into the richness of qualitative information. This package provides tools to visualise when refinements occur and how that affects the trends of novel and duplicate codes. These visualisations, when used progressively as new interviews are finished, can help the researcher to decide on a stopping point for their interviews. For context, see Wong et al., (2023) <doi:10.1177/16094069231220773>.
Statistical entropy analysis of network data as introduced by Frank and Shafie (2016) <doi:10.1177/0759106315615511>, and a in textbook which is in progress.
An implementation of the Naive Bayes Classifier (NBC) algorithm used for Verbal Autopsy (VA) built on code from Miasnikof et al (2015) <DOI:10.1186/s12916-015-0521-2>.
Utilities for Natural Language Processing.
This package implements network analysis and graph theory measures used in neuroscience, cognitive science, and psychology. Methods include various filtering methods and approaches such as threshold, dependency (Kenett, Tumminello, Madi, Gur-Gershgoren, Mantegna, & Ben-Jacob, 2010 <doi:10.1371/journal.pone.0015032>), Information Filtering Networks (Barfuss, Massara, Di Matteo, & Aste, 2016 <doi:10.1103/PhysRevE.94.062306>), and Efficiency-Cost Optimization (Fallani, Latora, & Chavez, 2017 <doi:10.1371/journal.pcbi.1005305>). Brain methods include the recently developed Connectome Predictive Modeling (see references in package). Also implements several network measures including local network characteristics (e.g., centrality), community-level network characteristics (e.g., community centrality), global network characteristics (e.g., clustering coefficient), and various other measures associated with the reliability and reproducibility of network analysis.
This package provides a set of functions to visualize National Football League analysis in ggplot2 plots and gt tables.
An interactive presentation on the topic of normal distribution using rmarkdown and shiny packages. It is helpful to those who want to learn normal distribution quickly and get a hands on experience. The presentation has a template for solving problems on normal distribution. Runtime examples are provided in the package function as well as at <https://kartikeyastat.shinyapps.io/NormalDistribution/>.
An implementation of network-based statistics in R using mixed effects models. Theoretical background for Network-Based Statistics can be found in Zalesky et al. (2010) <doi:10.1016/j.neuroimage.2010.06.041>. For Mixed Effects Models check the R package <https://CRAN.R-project.org/package=nlme>.
This package provides functions for adaptive parallel tempering (APT) with NIMBLE models. Adapted from Lacki & Miasojedow (2016) <DOI:10.1007/s11222-015-9579-0> and Miasojedow, Moulines and Vihola (2013) <DOI:10.1080/10618600.2013.778779>.
This package contains functions to query and visualize the Neuroimaging features associated with genetically regulated gene expression (GReX). The primary utility, neuroimaGene(), relies on a list of user-defined genes and returns a table of neuroimaging features (NIDPs) associated with each gene. This resource is designed to assist in the interpretation of genome-wide and transcriptome-wide association studies that evaluate brain related traits. Bledsoe (2024) <doi:10.1016/j.ajhg.2024.06.002>. In addition there are several visualization functions that generate summary plots and 2-dimensional visualizations of regional brain measures. Mowinckel (2020).