Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows users to download and analyze official data on Brazil's federal budget through the SPARQL endpoint provided by the Integrated Budget and Planning System ('SIOP'). This package enables access to detailed information on budget allocations and expenditures of the federal government, making it easier to analyze and visualize these data. Technical information on the Brazilian federal budget is available (Portuguese only) at <https://www1.siop.planejamento.gov.br/mto/>. The SIOP endpoint is available at <https://www1.siop.planejamento.gov.br/sparql/>.
Allows code to be run only once on a given computer, using lockfiles. Typical use cases include startup messages shown only when a package is loaded for the very first time.
Algorithms for D-, A-, I-, and c-optimal designs. Some of the functions in this package require the gurobi software and its accompanying R package. For their installation, please follow the instructions at <https://www.gurobi.com> and the file gurobi_inst.txt, respectively.
This package implements the efficient algorithm by Ortmann and Brandes (2017) <doi:10.1007/s41109-017-0027-2> to compute the orbit-aware frequency distribution of induced and non-induced quads, i.e. subgraphs of size four. Given an edge matrix, data frame, or a graph object (e.g., igraph'), the orbit-aware counts are computed respective each of the edges and nodes.
R Interface to ONNX - Open Neural Network Exchange <https://onnx.ai/>. ONNX provides an open source format for machine learning models. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types.
Generalise the starting point of the array index.
This package provides a system to help you organize projects. Most analyses have three (or more) main sections: code, results, and data, each with different requirements (version control/sharing/encryption). You provide folder locations and org helps you take care of the details.
This package implements methods to fit a parametric Bayesian multi-state model to tumor response data. The model can be used to sample from the predictive distribution to impute missing data and calculate probability of success for custom decision criteria in early clinical trials during an ongoing trial. The inference is implemented using stan'.
Analyses of OTU tables produced by 16S rRNA gene amplicon sequencing, as well as example data. It contains the data and scripts used in the paper Linz, et al. (2017) "Bacterial community composition and dynamics spanning five years in freshwater bog lakes," <doi: 10.1128/mSphere.00169-17>.
Estimates optimal classification (Poole 2000) <doi:10.1093/oxfordjournals.pan.a029814> scores from roll call votes supplied though a rollcall object from package pscl'.
This package provides functions for the design process of survey sampling, with specific tools for multi-wave and multi-phase designs. Perform optimum allocation using Neyman (1934) <doi:10.2307/2342192> or Wright (2012) <doi:10.1080/00031305.2012.733679> allocation, split strata based on quantiles or values of known variables, randomly select samples from strata, allocate sampling waves iteratively, and organize a complex survey design. Also includes a Shiny application for observing the effects of different strata splits. A paper on this package was published in the Journal of Statistical Software <doi:10.18637/jss.v114.i10>.
Observational studies are limited in that there could be an unmeasured variable related to both the response variable and the primary predictor. If this unmeasured variable were included in the analysis it would change the relationship (possibly changing the conclusions). Sensitivity analysis is a way to see how much of a relationship needs to exist with the unmeasured variable before the conclusions change. This package provides tools for doing a sensitivity analysis for regression (linear, logistic, and cox) style models.
This package provides the setup and calculations needed to run a likelihood-based continual reassessment method (CRM) dose finding trial and performs simulations to assess design performance under various scenarios. 3 dose finding designs are included in this package: ordinal proportional odds model (POM) CRM, ordinal continuation ratio (CR) model CRM, and the binary 2-parameter logistic model CRM. These functions allow customization of design characteristics to vary sample size, cohort sizes, target dose-limiting toxicity (DLT) rates, discrete or continuous dose levels, combining ordinal grades 0 and 1 into one category, and incorporate safety and/or stopping rules. For POM and CR model designs, ordinal toxicity grades are specified by common terminology criteria for adverse events (CTCAE) version 4.0. Function pseudodata creates the necessary starting models for these 3 designs, and function nextdose estimates the next dose to test in a cohort of patients for a target DLT rate. We also provide the function crmsimulations to assess the performance of these 3 dose finding designs under various scenarios.
Ordinal patterns describe the dynamics of a time series by looking at the ranks of subsequent observations. By comparing ordinal patterns of two times series, Schnurr (2014) <doi:10.1007/s00362-013-0536-8> defines a robust and non-parametric dependence measure: the ordinal pattern coefficient. Functions to calculate this and a method to detect a change in the pattern coefficient proposed in Schnurr and Dehling (2017) <doi:10.1080/01621459.2016.1164706> are provided. Furthermore, the package contains a function for calculating the ordinal pattern frequencies. Generalized ordinal patterns as proposed by Schnurr and Fischer (2022) <doi:10.1016/j.csda.2022.107472> are also considered.
Supports the analysis of Oceanographic data, including ADCP measurements, measurements made with argo floats, CTD measurements, sectional data, sea-level time series, coastline and topographic data, etc. Provides specialized functions for calculating seawater properties such as potential temperature in either the UNESCO or TEOS-10 equation of state. Produces graphical displays that conform to the conventions of the Oceanographic literature. This package is discussed extensively by Kelley (2018) "Oceanographic Analysis with R" <doi:10.1007/978-1-4939-8844-0>.
Bayesian reconstruction of disease outbreaks using epidemiological and genetic information. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C and Ferguson N. 2014. <doi:10.1371/journal.pcbi.1003457>. Campbell, F, Cori A, Ferguson N, Jombart T. 2019. <doi:10.1371/journal.pcbi.1006930>.
This is a tool to find the optimal rerandomization threshold in non-sequential experiments. We offer three procedures based on assumptions made on the residuals distribution: (1) normality assumed (2) excess kurtosis assumed (3) entire distribution assumed. Illustrations are included. Also included is a routine to unbiasedly estimate Frobenius norms of variance-covariance matrices. Details of the method can be found in "Optimal Rerandomization via a Criterion that Provides Insurance Against Failed Experiments" Adam Kapelner, Abba M. Krieger, Michael Sklar and David Azriel (2020) <arXiv:1905.03337>.
This package provides a suite of tools for the comprehensive visualization of multi-omics data, including genomics, transcriptomics, and proteomics. Offers user-friendly functions to generate publication-quality plots, thereby facilitating the exploration and interpretation of complex biological datasets. Supports seamless integration with popular R visualization frameworks and is well-suited for both exploratory data analysis and the presentation of final results. Key formats and methods are presented in Huang, S., et al. (2024) "The Born in Guangzhou Cohort Study enables generational genetic discoveries" <doi:10.1038/s41586-023-06988-4>.
Package for estimating the parameters of a nonlinear function using iterated linearization via Taylor series. Method is based on KubÃ¡Ä ek (2000) ISBN: 80-244-0093-6. The algorithm is a generalization of the procedure given in Köning, R., Wimmer, G. and Witkovský, V. (2014) <doi:10.1088/0957-0233/25/11/115001>.
This package provides routines for finding an Optimal System of Distinct Representatives (OSDR), as defined by D.Gale (1968) <doi:10.1016/S0021-9800(68)80039-0>.
Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <doi:10.48550/arXiv.2001.00636>. Loosely based on the GritBot <https://www.rulequest.com/gritbot-info.html> software.
Retrieve data from the Our World in Data (OWID) Chart API <https://docs.owid.io/projects/etl/api/>. OWID provides public access to more than 5,000 charts focusing on global problems such as poverty, disease, hunger, climate change, war, existential risks, and inequality.
This package provides implementations of some of the most important outlier detection algorithms. Includes a tutorial mode option that shows a description of each algorithm and provides a step-by-step execution explanation of how it identifies outliers from the given data with the specified input parameters. References include the works of Azzedine Boukerche, Lining Zheng, and Omar Alfandi (2020) <doi:10.1145/3381028>, Abir Smiti (2020) <doi:10.1016/j.cosrev.2020.100306>, and Xiaogang Su, Chih-Ling Tsai (2011) <doi:10.1002/widm.19>.
Several Oceanographic data sets are provided for use by the oce package and for other purposes.