Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Loading NONMEM (NONlinear Mixed-Effect Modeling, <https://www.iconplc.com/solutions/technologies/nonmem/>) and PSN (Perl-speaks-NONMEM, <https://uupharmacometrics.github.io/PsN/>) output files to extract parameter estimates, provide visual predictive check (VPC) and goodness of fit (GOF) plots, and simulate with parameter uncertainty.
Generate pseudonymous animal names that are delightful and easy to remember like the Likable Leech and the Proud Chickadee. A unique pseudonym can be created for every unique element in a vector or row in a data frame. Pseudonyms can be customized and tracked over time, so that the same input is always assigned the same pseudonym.
This package provides a set of functions to access National Football League play-by-play data from <https://www.nfl.com/>.
An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resources) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a web-based data viewer and web access, please see <https://power.larc.nasa.gov/>.
This package provides a graph visualization engine that emphasizes on aesthetics at the same time providing default parameters that yield out-of-the-box-nice visualizations. The package is built on top of The Grid Graphics Package and seamlessly work with igraph and network objects.
Multidimensional nonparametric spatial (spatio-temporal) geostatistics. S3 classes and methods for multidimensional: linear binning, local polynomial kernel regression (spatial trend estimation), density and variogram estimation. Nonparametric methods for simultaneous inference on both spatial trend and variogram functions (for spatial processes). Nonparametric residual kriging (spatial prediction). For details on these methods see, for example, Fernandez-Casal and Francisco-Fernandez (2014) <doi:10.1007/s00477-013-0817-8> or Castillo-Paez et al. (2019) <doi:10.1016/j.csda.2019.01.017>.
This package implements statistical tools for analyzing, simulating, and computing properties of the New Topp-Leone Kumaraswamy Inverse Exponential (NTLKwIEx) distribution. See Atchadé M, Otodji T, and Djibril A (2024) <doi:10.1063/5.0179458> and Atchadé M, Otodji T, Djibril A, and N'bouké M (2023) <doi:10.1515/phys-2023-0151> for details.
Despite that several tests for normality in stationary processes have been proposed in the literature, consistent implementations of these tests in programming languages are limited. Seven normality test are implemented. The asymptotic Lobato & Velasco's, asymptotic Epps, Psaradakis and Vávra, Lobato & Velasco's and Epps sieve bootstrap approximations, El bouch et al., and the random projections tests for univariate stationary process. Some other diagnostics such as, unit root test for stationarity, seasonal tests for seasonality, and arch effect test for volatility; are also performed. Additionally, the El bouch test performs normality tests for bivariate time series. The package also offers residual diagnostic for linear time series models developed in several packages.
An interface to Neptune. A metadata store for MLOps, built for teams that run a lot of experiments. It gives you a single place to log, store, display, organize, compare, and query all your model-building metadata. Neptune is used for: â ¢ Experiment tracking: Log, display, organize, and compare ML experiments in a single place. â ¢ Model registry: Version, store, manage, and query trained models, and model building metadata. â ¢ Monitoring ML runs live: Record and monitor model training, evaluation, or production runs live For more information see <https://neptune.ai/>.
This package provides a method for obtaining nonparametric estimates of regression models with or without factor-by-curve interactions using local polynomial kernel smoothers or splines. Additionally, a parametric model (allometric model) can be estimated.
This package provides efficient implementation of the Narrowest-Over-Threshold methodology for detecting an unknown number of change-points occurring at unknown locations in one-dimensional data following deterministic signal + noise model. Currently implemented scenarios are: piecewise-constant signal, piecewise-constant signal with a heavy-tailed noise, piecewise-linear signal, piecewise-quadratic signal, piecewise-constant signal and with piecewise-constant variance of the noise. For details, see Baranowski, Chen and Fryzlewicz (2019) <doi:10.1111/rssb.12322>.
Sample sizes are often small due to hard to reach target populations, rare target events, time constraints, limited budgets, or ethical considerations. Two statistical methods with promising performance in small samples are the nonparametric bootstrap test with pooled resampling method, which is the focus of Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, and informative hypothesis testing, which is implemented in the restriktor package. The npboottprmFBar package uses the nonparametric bootstrap test with pooled resampling method to implement informative hypothesis testing. The bootFbar() function can be used to analyze data with this method and the persimon() function can be used to conduct performance simulations on type-one error and statistical power.
Converts number spellings into their equivalent numbers. Supports numbers written in English, French, or Spanish.
Retrieve and plot word frequencies through time from the "Google Ngram Viewer" <https://books.google.com/ngrams>.
This package provides routines for plotting linkage and association results along a chromosome, with marker names displayed along the top border. There are also routines for generating BED and BedGraph custom tracks for viewing in the UCSC genome browser. The data reformatting program Mega2 uses this package to plot output from a variety of programs.
Natural strata can be used in observational studies to balance the distributions of many covariates across any number of treatment groups and any number of comparisons. These strata have proportional amounts of units within each stratum across the treatments, allowing for simple interpretation and aggregation across strata. Within each stratum, the units are chosen using randomized rounding of a linear program that balances many covariates. For more details, see Brumberg et al. (2022) <doi:10.1111/rssa.12848> and Brumberg et al.(2023) <doi:10.1093/jrsssc/qlad010>. To solve the linear program, the Gurobi commercial optimization software is recommended, but not required. The gurobi R package can be installed by following the instructions at <https://docs.gurobi.com/projects/optimizer/en/current/reference/r/setup.html> after claiming your free academic license at <https://www.gurobi.com/academia/academic-program-and-licenses/>.
Download Current & Historical Bhavcopy. Get Live Market data from NSE India of Equities and Derivatives (F&O) segment. Data source <https://www.nseindia.com/>.
This package provides a minimal package for downloading data from GitHub repositories of the nflverse project.
Classification, regression, and clustering with k nearest neighbors algorithm. Implements several distance and similarity measures, covering continuous and logical features. Outputs ranked neighbors. Most features of this package are directly based on the PMML specification for KNN.
Conduct a noncompartmental analysis with industrial strength. Some features are 1) CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method 5) Produce pdf, rtf, text report files. * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Implementation of the two error variance estimation methods in high-dimensional linear models of Yu, Bien (2017) <arXiv:1712.02412>.
This package provides a computational toolkit for analyzing nematode communities in ecological studies. Includes methods to quantify nematode-based ecological indicators such as metabolic footprints, energy flow metrics, and community structure. These tools support assessments of soil health, ecosystem functioning, and trophic interactions, standardizing the use of nematodes as bioindicators.
Estimates micro effects on macro structures (MEMS) and average micro mediated effects (AMME). URL: <https://github.com/sduxbury/netmediate>. BugReports: <https://github.com/sduxbury/netmediate/issues>. Robins, Garry, Phillipa Pattison, and Jodie Woolcock (2005) <doi:10.1086/427322>. Snijders, Tom A. B., and Christian E. G. Steglich (2015) <doi:10.1177/0049124113494573>. Imai, Kosuke, Luke Keele, and Dustin Tingley (2010) <doi:10.1037/a0020761>. Duxbury, Scott (2023) <doi:10.1177/00811750231209040>. Duxbury, Scott (2024) <doi:10.1177/00811750231220950>.
Makes NCBI taxonomic data locally available and searchable as an R object.