Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the Nonparametric Predictive Inference approach in R. It provides tools for quantifying uncertainty via lower and upper probabilities. It includes useful functions for pairwise and multiple comparisons: comparing two groups with and without terminated tails, selecting the best group, selecting the subset of best groups, selecting the subset including the best group.
Training of neural networks using backpropagation, resilient backpropagation with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the modified globally convergent version by Anastasiadis et al. (2005). The package allows flexible settings through custom-choice of error and activation function. Furthermore, the calculation of generalized weights (Intrator O & Intrator N, 1993) is implemented.
This package provides functions to compute the non-negative garrote estimator as proposed by Breiman (1995) <https://www.jstor.org/stable/1269730> with the penalized initial estimators extension as proposed by Yuan and Lin (2007) <https://www.jstor.org/stable/4623260>.
Computes the probability density function, cumulative distribution function, quantile function, random numbers and measures of inference for the following general families of distributions (each family defined in terms of an arbitrary cdf G): Marshall Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, and exponentiated exponential Poisson G distributions.
Fits non-homogeneous Markov multistate models and misclassification-type hidden Markov models in continuous time to intermittently observed data. Implements the methods in Titman (2011) <doi:10.1111/j.1541-0420.2010.01550.x>. Uses direct numerical solution of the Kolmogorov forward equations to calculate the transition probabilities.
Calculates the normalized mutual information (NMI) of two community structures in network analysis.
Includes five particle filtering algorithms for use with state space models in the nimble system: Auxiliary', Bootstrap', Ensemble Kalman filter', Iterated Filtering 2', and Liu-West', as described in Michaud et al. (2021), <doi:10.18637/jss.v100.i03>. A full User Manual is available at <https://r-nimble.org>.
This package provides tools for drawing Statistical Process Control (SPC) charts. This package supports the NHS Making Data Count programme, and allows users to draw XmR charts, use change points and apply rules with summary indicators for when rules are breached.
Snow water equivalent is modeled with the process based models delta.snow and HS2SWE and empirical regression, which use relationships between density and diverse at-site parameters. The methods are described in Winkler et al. (2021) <doi:10.5194/hess-25-1165-2021>, Magnusson et al. (2025) <doi:10.1016/j.coldregions.2025.104435>, Guyennon et al. (2019) <doi:10.1016/j.coldregions.2019.102859>, Pistocchi (2016) <doi:10.1016/j.ejrh.2016.03.004>, Jonas et al. (2009) <doi:10.1016/j.jhydrol.2009.09.021> and Sturm et al. (2010) <doi:10.1175/2010JHM1202.1>.
This package provides quality control (QC), normalization, and batch effect correction operations for NanoString nCounter data, Talhouk et al. (2016) <doi:10.1371/journal.pone.0153844>. Various metrics are used to determine which samples passed or failed QC. Gene expression should first be normalized to housekeeping genes, before a reference-based approach is used to adjust for batch effects. Raw NanoString data can be imported in the form of Reporter Code Count (RCC) files.
To add the table of numbers at risk below the Kaplan-Meier plot.
This package provides functions and examples for histogram, kernel (classical, variable bandwidth and transformations based), discrete and semiparametric hazard rate estimators.
This package provides functions to calculate estimates of intrinsic and extrinsic noise from the two-reporter single-cell experiment, as in Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186. Functions implement multiple estimators developed for unbiasedness or min Mean Squared Error (MSE) in Fu, A. Q. and Pachter, L. (2016). Estimating intrinsic and extrinsic noise from single-cell gene expression measurements. Statistical Applications in Genetics and Molecular Biology, 15(6), 447-471.
Perform an exploration and a preliminary analysis on the dose- response relationship of nanomaterial toxicity. Several functions are provided for data exploration, including functions for creating a subset of dataset, frequency tables and plots. Inference for order restricted dose- response data is performed by testing the significance of monotonic dose-response relationship, using Williams, Marcus, M, Modified M and Likelihood ratio tests. Several methods of multiplicity adjustment are also provided. Description of the methods can be found in <https://github.com/rahmasarina/dose-response-analysis/blob/main/Methodology.pdf>.
This package provides a novel integral estimator for estimating the causal effects with continuous treatments (or dose-response curves) and a localized derivative estimator for estimating the derivative effects. The inference on the dose-response curve and its derivative is conducted via nonparametric bootstrap. The reference paper is Zhang, Chen, and Giessing (2024) <doi:10.48550/arXiv.2405.09003>.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for ggplot2 plotting methods for nlmixr2 objects.
Box-constrained multiobjective optimization using the elitist non-dominated sorting genetic algorithm - NSGA-II. Fast non-dominated sorting, crowding distance, tournament selection, simulated binary crossover, and polynomial mutation are called in the main program. The methods are described in Deb et al. (2002) <doi:10.1109/4235.996017>.
Helps a clinical trial team discuss the clinical goals of a well-defined biomarker with a diagnostic, staging, prognostic, or predictive purpose. From this discussion will come a statistical plan for a (non-randomized) validation trial. Both prospective and retrospective trials are supported. In a specific focused discussion, investigators should determine the range of "discomfort" for the NNT, number needed to treat. The meaning of the discomfort range, [NNTlower, NNTupper], is that within this range most physicians would feel discomfort either in treating or withholding treatment. A pair of NNT values bracketing that range, NNTpos and NNTneg, become the targets of the study's design. If the trial can demonstrate that a positive biomarker test yields an NNT less than NNTlower, and that a negative biomarker test yields an NNT less than NNTlower, then the biomarker may be useful for patients. A highlight of the package is visualization of a "contra-Bayes" theorem, which produces criteria for retrospective case-controls studies.
Incorporating node-level covariates for community detection has gained increasing attention these years. This package provides the function for implementing the novel community detection algorithm known as Network-Adjusted Covariates for Community Detection (NAC), which is designed to detect latent community structure in graphs with node-level information, i.e., covariates. This algorithm can handle models such as the degree-corrected stochastic block model (DCSBM) with covariates. NAC specifically addresses the discrepancy between the community structure inferred from the adjacency information and the community structure inferred from the covariates information. For more detailed information, please refer to the reference paper: Yaofang Hu and Wanjie Wang (2023) <arXiv:2306.15616>. In addition to NAC, this package includes several other existing community detection algorithms that are compared to NAC in the reference paper. These algorithms are Spectral Clustering On Ratios-of Eigenvectors (SCORE), network-based regularized spectral clustering (Net-based), covariate-based spectral clustering (Cov-based), covariate-assisted spectral clustering (CAclustering) and semidefinite programming (SDP).
Access the United States National Provider Identifier Registry API <https://npiregistry.cms.hhs.gov/api/>. Obtain and transform administrative data linked to a specific individual or organizational healthcare provider, or perform advanced searches based on provider name, location, type of service, credentials, and other attributes exposed by the API.
Package including an interactive Shiny application for testing normality visually.
Allele frequency databases for 50 forensic short tandem repeat (STR) markers, covering Norway and several broader regional populations: Europe, Africa, South America, West Asia, Middle Asia, and East Asia. Developed and maintained for use at the Department of Forensic Sciences, Oslo, Norway.
Nonparametric test of independence between a pair of spatial objects (random fields, point processes) based on random shifts with torus or variance correction. See MrkviÄ ka et al. (2021) <doi:10.1016/j.spasta.2020.100430>, DvoŠák et al. (2022) <doi:10.1111/insr.12503>, DvoŠák and MrkviÄ ka (2024) <doi:10.1080/10618600.2024.2357626>.