Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast functions implemented in C++ via Rcpp to support the NeuroAnatomy Toolbox ('nat') ecosystem. These functions provide large speed-ups for basic manipulation of neuronal skeletons over pure R functions found in the nat package. The expectation is that end users will not use this package directly, but instead the nat package will automatically use routines from this package when it is available to enable large performance gains.
This package provides a unified set of helper functions to access datasets from the NYC Open Data platform <https://opendata.cityofnewyork.us/>. Functions return results as tidy tibbles and support optional filtering, sorting, and row limits via the Socrata API. The package includes endpoints for 311 service requests, DOB job applications, juvenile justice metrics, school safety, environmental data, event permitting, and additional citywide datasets. The package is utilized as a primary pedagogical tool for teaching data acquisition in Reproducible Research Using R'.
Estimates and plots (as a single plot and as a heat map) the rolling window correlation coefficients between two time series and computes their statistical significance, which is carried out through a non-parametric computing-intensive method. This method addresses the effects due to the multiple testing (inflation of the Type I error) when the statistical significance is estimated for the rolling window correlation coefficients. The method is based on Monte Carlo simulations by permuting one of the variables (e.g., the dependent) under analysis and keeping fixed the other variable (e.g., the independent). We improve the computational efficiency of this method to reduce the computation time through parallel computing. The NonParRolCor package also provides examples with synthetic and real-life environmental time series to exemplify its use. Methods derived from R. Telford (2013) <https://quantpalaeo.wordpress.com/2013/01/04/> and J.M. Polanco-Martinez and J.L. Lopez-Martinez (2021) <doi:10.1016/j.ecoinf.2021.101379>.
This package provides functions to flash your hue lights, or text yourself, from R. Designed to be used with long running scripts.
Efficient tools for preparation, checking and post-processing of data in PK/PD (pharmacokinetics/pharmacodynamics) modeling, with focus on use of Nonmem, including consistency, traceability, and Nonmem compatibility of Data. Rigorously checks final Nonmem datasets. Implemented in data.table', but easily integrated with base and tidyverse'.
Interface to NatureServe (<https://www.natureserve.org/>). Includes methods to get data, image metadata, search taxonomic names, and make maps.
This package provides a flexible statistical framework for network-valued data analysis. It leverages the complexity of the space of distributions on graphs by using the permutation framework for inference as implemented in the flipr package. Currently, only the two-sample testing problem is covered and generalization to k samples and regression will be added in the future as well. It is a 4-step procedure where the user chooses a suitable representation of the networks, a suitable metric to embed the representation into a metric space, one or more test statistics to target specific aspects of the distributions to be compared and a formula to compute the permutation p-value. Two types of inference are provided: a global test answering whether there is a difference between the distributions that generated the two samples and a local test for localizing differences on the network structure. The latter is assumed to be shared by all networks of both samples. References: Lovato, I., Pini, A., Stamm, A., Vantini, S. (2020) "Model-free two-sample test for network-valued data" <doi:10.1016/j.csda.2019.106896>; Lovato, I., Pini, A., Stamm, A., Taquet, M., Vantini, S. (2021) "Multiscale null hypothesis testing for network-valued data: Analysis of brain networks of patients with autism" <doi:10.1111/rssc.12463>.
This package provides a non-parametric test for multi-observer concordance and differences between concordances in (un)balanced data.
Palettes generated from NBA jersey colorways.
Draw samples from truncated multivariate normal distribution using the sequential nearest neighbor (SNN) method introduced in "Scalable Sampling of Truncated Multivariate Normals Using Sequential Nearest-Neighbor Approximation" <doi:10.48550/arXiv.2406.17307>.
This package provides functions to access NASA's Earth Imagery and Assets API and the Earth Observatory Natural Event Tracker (EONET) webservice.
Includes assorted tools for network analysis. Bridge centrality; goldbricker; MDS, PCA, & eigenmodel network plotting.
This package provides a nomogram can not be easily applied, because it is difficult to calculate the points or even the survival probability. The package, including a function of nomogramEx(), is to extract the polynomial equations to calculate the points of each variable, and the survival probability corresponding to the total points.
Models for non-linear time series analysis and causality detection. The main functionalities of this package consist of an implementation of the classical causality test (C.W.J.Granger 1980) <doi:10.1016/0165-1889(80)90069-X>, and a non-linear version of it based on feed-forward neural networks. This package contains also an implementation of the Transfer Entropy <doi:10.1103/PhysRevLett.85.461>, and the continuous Transfer Entropy using an approximation based on the k-nearest neighbors <doi:10.1103/PhysRevE.69.066138>. There are also some other useful tools, like the VARNN (Vector Auto-Regressive Neural Network) prediction model, the Augmented test of stationarity, and the discrete and continuous entropy and mutual information.
Enable programmatic interaction with Notion pages, databases, blocks, comments, and users through the Notion API <https://developers.notion.com/>. Provides both synchronous and asynchronous client interfaces for building workflows and automations that integrate with Notion workspaces. Supports all Notion API endpoints including content creation, data retrieval, and workspace management.
This package provides a set of functions to simulate National Football League seasons including the sophisticated tie-breaking procedures.
Downloading and organizing plant presence and percent cover data from the National Ecological Observatory Network <https://www.neonscience.org>.
This package provides functions for Bayesian analysis of data from randomized experiments with non-compliance. The functions are based on the models described in Imbens and Rubin (1997) <doi:10.1214/aos/1034276631>. Currently only two types of outcome models are supported: binary outcomes and normally distributed outcomes. Models can be fit with and without the exclusion restriction and/or the strong access monotonicity assumption. Models are fit using the data augmentation algorithm as described in Tanner and Wong (1987) <doi:10.2307/2289457>.
This package provides a collection of datasets related to neutrosophic sets for statistical modeling and analysis.
These routines create multiple imputations of missing at random categorical data, and create multiply imputed synthesis of categorical data, with or without structural zeros. Imputations and syntheses are based on Dirichlet process mixtures of multinomial distributions, which is a non-parametric Bayesian modeling approach that allows for flexible joint modeling, described in Manrique-Vallier and Reiter (2014) <doi:10.1080/10618600.2013.844700>.
Access the New Zealand Freshwater Fish Database from R and a few functions to clean the data once in R.
Enables users to retrieve data, meta-data, and codebooks from <https://nettskjema.no/>. The data from the API is richer than from the online data portal. This package is not developed by the University of Oslo IT. Mowinckel (2021) <doi:10.5281/zenodo.4745481>.
Calculates network measures commonly used in Network Medicine. Measures such as the Largest Connected Component, the Relative Largest Connected Component, Proximity and Separation are calculated along with their statistical significance. Significance can be computed both using a degree-preserving randomization and non-degree preserving.
The aim is to develop an R package, which is the new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, a Bimodal Weibull Distribution, the Discrete Lindley Distribution, The Gamma-Lomax Distribution, Weighted Geometric Distribution, a Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, the Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, the Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.