Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Adds brute force and multiple starting values to nls.
This package provides functions for specifying and fitting nested dichotomy logistic regression models for a multi-category response and methods for summarising and plotting those models. Nested dichotomies are statistically independent, and hence provide an additive decomposition of tests for the overall polytomous response. When the dichotomies make sense substantively, this method can be a simpler alternative to the standard multinomial logistic model which compares response categories to a reference level. See: J. Fox (2016), "Applied Regression Analysis and Generalized Linear Models", 3rd Ed., ISBN 1452205663.
In this implementation of the Naive Bayes classifier following class conditional distributions are available: Bernoulli', Categorical', Gaussian', Poisson', Multinomial and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.
This package provides a collection of dynamic network data sets from various sources and multiple authors represented as networkDynamic'-formatted objects.
Sparse VAR estimation based on LASSO.
Normalize a given Hadamard matrix. A Hadamard matrix is said to be normalized when its first row and first column entries are all 1, see Hedayat, A. and Wallis, W. D. (1978) "Hadamard matrices and their applications. The Annals of Statistics, 1184-1238." <doi:10.1214/aos/1176344370>.
Validate, format and compare identification numbers used in Brazil. These numbers are used to identify individuals (CPF), vehicles (RENAVAN), companies (CNPJ) and etc. Functions to format, validate and compare these numbers have been implemented in a vectorized way in order to speed up validations and comparisons in big datasets.
We proposed a package for the classification task which uses Negative Binomial distribution within Linear Discriminant Analysis (NBLDA). It is an extension of the PoiClaClu package to Negative Binomial distribution. The classification algorithms are based on the papers Dong et al. (2016, ISSN: 1471-2105) and Witten, DM (2011, ISSN: 1932-6157) for NBLDA and PLDA, respectively. Although PLDA is a sparse algorithm and can be used for variable selection, the algorithm proposed by Dong et al. is not sparse. Therefore, it uses all variables in the classifier. Here, we extend Dong et al.'s algorithm to the sparse case by shrinking overdispersion towards 0 (Yu et al., 2013, ISSN: 1367-4803) and offset parameter towards 1 (as proposed by Witten DM, 2011). We support only the classification task with this version.
The noweb system for source code, implemented in R.
This package provides tools for non-parametric Fourier deconvolution using the N-Power Fourier Deconvolution (NPFD) method. This package includes methods for density estimation (densprf()) and sample generation (createSample()), enabling users to perform statistical analyses on mixed or replicated data sets.
This package provides functions for downloading, calibrating, and analyzing atmospheric isotope data bundled into the eddy covariance data products of the National Ecological Observatory Network (NEON) <https://www.neonscience.org>. Calibration tools are provided for carbon and water isotope products. Carbon isotope calibration details are found in Fiorella et al. (2021) <doi:10.1029/2020JG005862>, and the readme file at <https://github.com/lanl/NEONiso>. Tools for calibrating water isotope products have been added as of 0.6.0, but have known deficiencies and should be considered experimental and unsupported.
Factorize binary matrices into rank-k components using the logistic function in the updating process. See e.g. Tomé et al (2015) <doi:10.1007/s11045-013-0240-9> .
Fits a non-linear transformation model ('nltm') for analyzing survival data, see Tsodikov (2003) <doi:10.1111/1467-9868.00414>. The class of nltm includes the following currently supported models: Cox proportional hazard, proportional hazard cure, proportional odds, proportional hazard - proportional hazard cure, proportional hazard - proportional odds cure, Gamma frailty, and proportional hazard - proportional odds.
Conducts Bayesian Hypothesis tests of a point null hypothesis against a two-sided alternative using Non-local Alternative Prior (NAP) for one- and two-sample z- and t-tests (Pramanik and Johnson, 2022). Under the alternative, the NAP is assumed on the standardized effects size in one-sample tests and on their differences in two-sample tests. The package considers two types of NAP densities: (1) the normal moment prior, and (2) the composite alternative. In fixed design tests, the functions calculate the Bayes factors and the expected weight of evidence for varied effect size and sample size. The package also provides a sequential testing framework using the Sequential Bayes Factor (SBF) design. The functions calculate the operating characteristics (OC) and the average sample number (ASN), and also conducts sequential tests for a sequentially observed data.
This package provides visual citations containing the metadata of a scientific paper and a QR code. A visual citation is a banner containing title, authors, journal and year of a publication. This package can create such banners based on BibTeX and BibLaTeX references or call the reference metadata from Crossref'-API. The banners include a QR code pointing to the DOI'. The resulting HTML object or PNG image can be included in a presentation to point the audience to good resources for further reading. Styling is possible via predefined designs or via custom CSS'. This package is not intended as replacement for proper reference manager packages, but a tool to enrich scientific presentation slides and conference posters.
Fit univariate non-linear scale mixture of skew-normal(NL-SMSN) regression, details in Garay, Lachos and Abanto-Valle (2011) <doi:10.1016/j.jkss.2010.08.003> and Lachos, Bandyopadhyay and Garay (2011) <doi:10.1016/j.spl.2011.03.019>.
Illustrate graphically the most common Null Hypothesis Significance Testing procedures. More specifically, this package provides functions to plot Chi-Squared, F, t (one- and two-tailed) and z (one- and two-tailed) tests, by plotting the probability density under the null hypothesis as a function of the different test statistic values. Although highly flexible (color theme, fonts, etc.), only the minimal number of arguments (observed test statistic, degrees of freedom) are necessary for a clear and useful graph to be plotted, with the observed test statistic and the p value, as well as their corresponding value labels. The axes are automatically scaled to present the relevant part and the overall shape of the probability density function. This package is especially intended for education purposes, as it provides a helpful support to help explain the Null Hypothesis Significance Testing process, its use and/or shortcomings.
Optimizing regular numeric problems in optically stimulated luminescence dating, such as: equivalent dose calculation, dose rate determination, growth curve fitting, decay curve decomposition, statistical age model optimization, and statistical plot visualization.
This package implements the routines to compare the survival curves with recurrent events, including the estimations of survival curves. The first model is a model for recurrent event, when the data are correlated or not correlated. It was proposed by Wang and Chang (1999) <doi:10.2307/2669690>. In the independent case, the survival function can be estimated by the generalization of the limit product model of Pena (2001) <doi:10.1198/016214501753381922>.
Create interactive analytic networks. It joins the data analysis power of R to obtain coincidences, co-occurrences and correlations, and the visualization libraries of JavaScript in one package.
This allows you to generate reporting workflows around nlmixr2 analyses with outputs in Word and PowerPoint. You can specify figures, tables and report structure in a user-definable YAML file. Also you can use the internal functions to access the figures and tables to allow their including in other outputs (e.g. R Markdown).
Set of functions to estimate kidney function and other traits of interest in nephrology.
This package provides a tool set for food information and dietary assessment. It uses food composition data from several reference databases, including: USDA (United States), CIQUAL (France), BEDCA (Spain), CNF (Canada) and STFCJ (Japan). NutrienTrackeR calculates the intake levels for both macronutrient and micronutrients, and compares them with the recommended dietary allowances (RDA). It includes a number of visualization tools, such as time series plots of nutrient intake, and pie-charts showing the main foods contributing to the intake level of a given nutrient. A shiny app exposing the main functionalities of the package is also provided.
Calculation of molecular number and brightness from fluorescence microscopy image series. The software was published in a 2016 paper <doi:10.1093/bioinformatics/btx434>. The seminal paper for the technique is Digman et al. 2008 <doi:10.1529/biophysj.107.114645>. A review of the technique was published in 2017 <doi:10.1016/j.ymeth.2017.12.001>.