Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a first implementation of automated parsing of user stories, when used to defined functional requirements for operational research mathematical models. It allows reading user stories, splitting them on the who-what-why template, and classifying them according to the parts of the mathematical model that they represent. Also provides semantic grouping of stories, for project management purposes.
This package provides general purpose tools for helping users to implement steepest gradient descent methods for function optimization; for details see Ruder (2016) <arXiv:1609.04747v2>. Currently, the Steepest 2-Groups Gradient Descent and the Adaptive Moment Estimation (Adam) are the methods implemented. Other methods will be implemented in the future.
Applies an objective Bayesian method to the Mb capture-recapture model to estimate the population size N. The Mb model is a class of capture-recapture methods used to account for variations in capture probability due to animal behavior. Under the Mb formulation, the initial capture of an animal may effect the probability of subsequent captures due to their becoming "trap happy" or "trap shy.".
Consider a data matrix of n individuals with p variates. The objective general index (OGI) is a general index that combines the p variates into a univariate index in order to rank the n individuals. The OGI is always positively correlated with each of the variates. More details can be found in Sei (2016) <doi:10.1016/j.jmva.2016.02.005>.
Conduct sensitivity analysis of omitted variable bias in linear econometric models using the methodology presented in Basu (2025) <doi:10.2139/ssrn.4704246>.
This package provides a set of tools to extract bibliographic content from OpenAlex database using API <https://docs.openalex.org>.
The Sequence of Physical Processes (SPP) framework is a way of interpreting the transient data derived from oscillatory rheological tests. It is designed to allow both the linear and non-linear deformation regimes to be understood within a single unified framework. This code provides a convenient way to determine the SPP framework metrics for a given sample of oscillatory data. It will produce a text file containing the SPP metrics, which the user can then plot using their software of choice. It can also produce a second text file with additional derived data (components of tangent, normal, and binormal vectors), as well as pre-plotted figures if so desired. It is the R version of the Package SPP by Simon Rogers Group for Soft Matter (Simon A. Rogers, Brian M. Erwin, Dimitris Vlassopoulos, Michel Cloitre (2011) <doi:10.1122/1.3544591>).
Allows access to a proof-of-concept database containing Open Access species range models and relevant metadata. Access to the database is via both PostgreSQL connection and API <https://github.com/EnquistLab/Biendata-Frontend>, allowing diverse use-cases.
This package provides details such as Morphine Equivalent Dose (MED), brand name and opioid content which are calculated of all oral opioids authorized for sale by Health Canada and the FDA based on their Drug Identification Number (DIN) or National Drug Code (NDC). MEDs are calculated based on recommendations by Canadian Institute for Health Information (CIHI) and Von Korff et al (2008) and information obtained from Health Canada's Drug Product Database's monthly data dump or FDA Daily database for Canadian and US databases respectively. Please note in no way should output from this package be a substitute for medical advise. All medications should only be consumed on prescription from a licensed healthcare provider.
An interface for interacting with OSF (<https://osf.io>). osfr enables you to access open research materials and data, or create and manage your own private or public projects.
An implementation of the Rapid Assessment Method for Older People or RAM-OP <https://www.helpage.org/resource/rapid-assessment-method-for-older-people-ramop-manual/>. It provides various functions that allow the user to design and plan the assessment and analyse the collected data. RAM-OP provides accurate and reliable estimates of the needs of older people.
I tend to repeat the same code chunks over and over again. At first, this was fine for me and I paid little attention to such redundancies. A little later, when I got tired of manually replacing Linux filepaths with the referring Windows versions, and vice versa, I started to stuff some very frequently used work-steps into functions and, even later, into a proper R package. And that's what this package is - a hodgepodge of various R functions meant to simplify (my) everyday-life coding work without, at the same time, being devoted to a particular scope of application.
This package provides tools to build and work with an ontology of linked (open) data in a tidy workflow. It is inspired by the Food and Agrilculture Organizations (FAO) caliper platform <https://www.fao.org/statistics/caliper/web/> and makes use of the Simple Knowledge Organisation System (SKOS).
Measures different aspects of page content, structure and performance for SEO (Search Engine Optimization). Aspects covered include HTML tags used in SEO, duplicate and near-duplicate content, structured data, on-site linking structure and popularity transfer, and many other amazing things. This package can be used to generate a real, full SEO audit report, which serves to detect errors or inefficiencies on a page that can be corrected in order to optimise its performance on search engines.
Computes optimal cutpoints for diagnostic tests or continuous markers. Various approaches for selecting optimal cutoffs have been implemented, including methods based on cost-benefit analysis and diagnostic test accuracy measures (Sensitivity/Specificity, Predictive Values and Diagnostic Likelihood Ratios). Numerical and graphical output for all methods is easily obtained.
Facilitates the gathering of biodiversity occurrence data from disparate sources. Metadata is managed throughout the process to facilitate reporting and enhanced ability to repeat analyses.
After develop a ODK <https://opendatakit.org/> frame, we can link the frame to Google Sheets <https://www.google.com/sheets/about/> and collect data through Android <https://www.android.com/>. This data uploaded to a Google sheets'. odk2spss() function help to convert the odk frame into SPSS <https://www.ibm.com/analytics/us/en/technology/spss/> frame. Also able to add downloaded Google sheets data or read data from Google sheets by using ODK frame submission_url'.
This package provides functions for quickly creating R and Python scripts, as well as Rmarkdown or Quarto documents with automatically assigned name prefixes. Prefixes are either file counts (e.g. "001") or dates (e.g. "2022-09-26").
Summarizes the taxonomic composition, diversity contribution of the rare and abundant community by using OTU (operational taxonomic unit) table which was generated by analyzing pipeline of QIIME or mothur'. The rare biosphere in this package is subset by the relative abundance threshold (for details about rare biosphere please see Lynch and Neufeld (2015) <doi:10.1038/nrmicro3400>).
Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is held-out from computation of the previous risk score. This package provides tools to estimate a size for this holdout set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <doi:10.48550/arXiv.2202.06374> (to appear in Annals of Applied Statistics) for details of methods.
Perform a Bayesian estimation of the ordinal exploratory Higher-order General Diagnostic Model (OHOEGDM) for Polytomous Data described by Culpepper, S. A. and Balamuta, J. J. (2021) <doi:10.1080/00273171.2021.1985949>.
An assortment of helper functions for managing data (e.g., rotating values in matrices by a user-defined angle, switching from row- to column-indexing), dates (e.g., intuiting year from messy date strings), handling missing values (e.g., removing elements/rows across multiple vectors or matrices if any have an NA), text (e.g., flushing reports to the console in real-time); and combining data frames with different schema (copying, filling, or concatenating columns or applying functions before combining).
The olr function systematically evaluates multiple linear regression models by exhaustively fitting all possible combinations of independent variables against the specified dependent variable. It selects the model that yields the highest adjusted R-squared (by default) or R-squared, depending on user preference. In model evaluation, both R-squared and adjusted R-squared are key metrics: R-squared measures the proportion of variance explained but tends to increase with the addition of predictorsâ regardless of relevanceâ potentially leading to overfitting. Adjusted R-squared compensates for this by penalizing model complexity, providing a more balanced view of fit quality. The goal of olr is to identify the most suitable model that captures the underlying structure of the data while avoiding unnecessary complexity. By comparing both metrics, it offers a robust evaluation framework that balances predictive power with model parsimony. Example Analogy: Imagine a gardener trying to understand what influences plant growth (the dependent variable). They might consider variables like sunlight, watering frequency, soil type, and nutrients (independent variables). Instead of manually guessing which combination works best, the olr function automatically tests every possible combination of predictors and identifies the most effective modelâ based on either the highest R-squared or adjusted R-squared value. This saves the user from trial-and-error modeling and highlights only the most meaningful variables for explaining the outcome. A Python version is also available at <https://pypi.org/project/olr>.
This package provides functionalities and data structures to retrieve, analyze and visualize aviation data. It includes a client interface to the OpenSky API <https://opensky-network.org>. It allows retrieval of flight information, as well as aircraft state vectors.