Allows you to define rules which can be used to verify a given dataset. The package acts as a thin wrapper around more powerful data packages such as dplyr', data.table', arrow', and DBI ('SQL'), which do the heavy lifting.
Access to The Guardian newspaper's open API <https://open-platform.theguardian.com/>, containing all articles published in The Guardian from 1999 to the present, including article text, metadata, tags and contributor information. An API key and registration is required.
Derivative Free Gradient Projection Algorithms for Factor Rotation. For more details see ?GPArotateDF
. Theory for these functions can be found in the following publications: Jennrich (2004) <doi:10.1007/BF02295647>. Bernaards and Jennrich (2005) <doi:10.1177/0013164404272507>.
Implementation of functions, which combines binomial calculation and data visualisation, to analyse the differences in publishing authorship by gender described in Day et al. (2020) <doi:10.1039/C9SC04090K>. It should only be used when self-reported gender is unavailable.
Monthly median home listing, sale price per square foot, and number of units sold for 2984 counties in the contiguous United States From 2008 to January 2016. Additional data sets containing geographical information and links to Wikipedia are also included.
Compute 21 summary measures of health inequality and its corresponding confidence intervals for ordered and non-ordered dimensions using disaggregated data. Measures for ordered dimensions (e.g., Slope Index of Inequality, Absolute Concentration Index) also accept individual and survey data.
Fit Cox proportional hazard models with a weighted partial likelihood. It handles one or multiple endpoints, additional matching and makes it possible to reuse controls for other endpoints Stoer NC and Samuelsen SO (2016) <doi:10.32614/rj-2016-030>.
Computes regression deletion diagnostics for multivariate linear models and provides some associated diagnostic plots. The diagnostic measures include hat-values (leverages), generalized Cook's distance, and generalized squared studentized residuals. Several types of plots to detect influential observations are provided.
Miscellaneous functions for a descriptive analysis and initial Bayesian and classical inference for the power parameter of the the Power Normal (PN) distribution. This miscellaneous will be extend for more distributions into the power family and the three-parameter model.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.
This app enables interactive validation, interpretation and visualization of structural topic models from the stm package by Roberts and others (2014) <doi:10.1111/ajps.12103>. It also includes helper functions for model diagnostics and extracting data from effect estimates.
An R client for the vatcheckapi.com VAT number validation API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://vatcheckapi.com/docs> .
Benchmarks for Machine Learning Analysis of the Gene Sets. The package contains a list of pathways and gene expression data sets used in "Identifying Tightly Regulated and Variably Expressed Networks by Differential Rank Conservation (DIRAC)" (2010) by Eddy et al.
Expression profiling using microarray technology to prove if Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium by Prado-Lopez et al. (2010) Stem Cells 28:407-418. Full data available at Gene Expression Omnibus series GSE37761.
The rawkit package provides two modules: rawkit and libraw. The rawkit module provides a high-level Pythonic interface for developing raw photos, while the libraw module provides a CTypes based interface for interacting with the low-level LibRaw C APIs.
Traditional noise filtering methods aim at removing noisy samples from a classification dataset. This package adapts classic and recent filtering techniques for use in regression problems, and it also incorporates methods specifically designed for regression data. In order to do this, it uses approaches proposed in the specialized literature, such as Martin et al. (2021) [<doi:10.1109/ACCESS.2021.3123151>] and Arnaiz-Gonzalez et al. (2016) [<doi:10.1016/j.eswa.2015.12.046>]. Thus, the goal of the implemented noise filters is to eliminate samples with noise in regression datasets.
An algorithm which can be used to determine an objective threshold for signal-noise separation in large random matrices (correlation matrices, mutual information matrices, network adjacency matrices) is provided. The package makes use of the results of Random Matrix Theory (RMT). The algorithm increments a suppositional threshold monotonically, thereby recording the eigenvalue spacing distribution of the matrix. According to RMT, that distribution undergoes a characteristic change when the threshold properly separates signal from noise. By using the algorithm, the modular structure of a matrix - or of the corresponding network - can be unraveled.
These tools implement in R a fundamental part of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios (<https://www.transitionmonitor.com/>). Financial institutions use PACTA to study how their capital allocation decisions align with climate change mitigation goals. This package matches data from corporate lending portfolios to asset level data from market-intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.
An RStudio addin for teaching and learning data manipulation using the dplyr package. You can learn each steps of data manipulation by clicking your mouse without coding. You can get resultant data (as a tibble') and the code for data manipulation.
This package contains functions to run propensity-biased allocation to balance covariate distributions in sequential trials and propensity-constrained randomization to balance covariate distributions in trials with known baseline covariates at time of randomization. Currently only supports trials comparing two groups.
Algorithms to speed up the Bayesian Lasso Cox model (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al. Biometrical J, 2015 <doi:10.1002/bimj.201400160>).
This package implements the sparse and smooth functional clustering (SaS-Funclust
) method (Centofanti et al. (2021) <arXiv:2103.15224>
) that aims to classify a sample of curves into homogeneous groups while jointly detecting the most informative portions of domain.
This package provides a set of user interface components to create outstanding shiny apps <https://shiny.posit.co/>, with the power of React JavaScript
<https://react.dev/>. Seamlessly support dark and light themes, customize CSS with tailwind <https://tailwindcss.com/>.