Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a bootstrap method for Respondent-Driven Sampling (RDS) that relies on the underlying structure of the RDS network to estimate uncertainty.
This package provides tools for data-driven statistical analysis using local polynomial regression and kernel density estimation methods as described in Calonico, Cattaneo and Farrell (2018, <doi:10.1080/01621459.2017.1285776>): lprobust() for local polynomial point estimation and robust bias-corrected inference, lpbwselect() for local polynomial bandwidth selection, kdrobust() for kernel density point estimation and robust bias-corrected inference, kdbwselect() for kernel density bandwidth selection, and nprobust.plot() for plotting results. The main methodological and numerical features of this package are described in Calonico, Cattaneo and Farrell (2019, <doi:10.18637/jss.v091.i08>).
Omics data come in different forms: gene expression, methylation, copy number, protein measurements and more. NCutYX allows clustering of variables, of samples, and both variables and samples (biclustering), while incorporating the dependencies across multiple types of Omics data. (SJ Teran Hidalgo et al (2017), <doi:10.1186/s12864-017-3990-1>).
Near-far matching is a study design technique for preprocessing observational data to mimic a pair-randomized trial. Individuals are matched to be near on measured confounders and far on levels of an instrumental variable. Methods outlined in further detail in Rigdon, Baiocchi, and Basu (2018) <doi:10.18637/jss.v086.c05>.
Commodity pricing models are (systems of) stochastic differential equations that are utilized for the valuation and hedging of commodity contingent claims (i.e. derivative products on the commodity) and other commodity related investments. Commodity pricing models that capture market dynamics are of great importance to commodity market participants in order to exercise sound investment and risk-management strategies. Parameters of commodity pricing models are estimated through maximum likelihood estimation, using available term structure futures data of a commodity. NFCP (n-factor commodity pricing) provides a framework for the modeling, parameter estimation, probabilistic forecasting, option valuation and simulation of commodity prices through state space and Monte Carlo methods, risk-neutral valuation and Kalman filtering. NFCP allows the commodity pricing model to consist of n correlated factors, with both random walk and mean-reverting elements. The n-factor commodity pricing model framework was first presented in the work of Cortazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in NFCP replicate the two-factor crude oil commodity pricing model presented in the prolific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approximate term structure futures data applied within this study provided in the NFCP package.
Perform a stratified weighted log-rank test in a randomized controlled trial. Tests can be visualized as a difference in average score on the two treatment arms. These methods are described in Magirr and Burman (2018) <doi:10.48550/arXiv.1807.11097>, Magirr (2020) <doi:10.48550/arXiv.2007.04767>, and Magirr and Jimenez (2022) <doi:10.48550/arXiv.2201.10445>.
An interactive document on the topic of naive Bayes classification analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/NBShiny/>.
Multidimensional nonparametric spatial (spatio-temporal) geostatistics. S3 classes and methods for multidimensional: linear binning, local polynomial kernel regression (spatial trend estimation), density and variogram estimation. Nonparametric methods for simultaneous inference on both spatial trend and variogram functions (for spatial processes). Nonparametric residual kriging (spatial prediction). For details on these methods see, for example, Fernandez-Casal and Francisco-Fernandez (2014) <doi:10.1007/s00477-013-0817-8> or Castillo-Paez et al. (2019) <doi:10.1016/j.csda.2019.01.017>.
Estimating the first and second derivatives of a regression function by the method of Wang and Lin (2015) <http://www.jmlr.org/papers/v16/wang15b.html>.
Represent network or igraph objects whose vertices can be represented by features in an sf object as a network graph surmising a sf plot. Fits into ggplot2 grammar.
This package provides functions for Bayesian analysis of data from randomized experiments with non-compliance. The functions are based on the models described in Imbens and Rubin (1997) <doi:10.1214/aos/1034276631>. Currently only two types of outcome models are supported: binary outcomes and normally distributed outcomes. Models can be fit with and without the exclusion restriction and/or the strong access monotonicity assumption. Models are fit using the data augmentation algorithm as described in Tanner and Wong (1987) <doi:10.2307/2289457>.
This package provides functions to access NASA's Earth Imagery and Assets API and the Earth Observatory Natural Event Tracker (EONET) webservice.
This package implements the navigated weighting (NAWT) proposed by Katsumata (2020) <arXiv:2005.10998>, which improves the inverse probability weighting by utilizing estimating equations suitable for a specific pre-specified parameter of interest (e.g., the average treatment effects or the average treatment effects on the treated) in propensity score estimation. It includes the covariate balancing propensity score proposed by Imai and Ratkovic (2014) <doi:10.1111/rssb.12027>, which uses covariate balancing conditions in propensity score estimation. The point estimate of the parameter of interest as well as coefficients for propensity score estimation and their uncertainty are produced using the M-estimation. The same functions can be used to estimate average outcomes in missing outcome cases.
Estimates the relative transmission probabilities between cases in an infectious disease outbreak or cluster using naive Bayes. Included are various functions to use these probabilities to estimate transmission parameters such as the generation/serial interval and reproductive number as well as finding the contribution of covariates to the probabilities and visualizing results. The ideal use is for an infectious disease dataset with metadata on the majority of cases but more informative data such as contact tracing or pathogen whole genome sequencing on only a subset of cases. For a detailed description of the methods see Leavitt et al. (2020) <doi:10.1093/ije/dyaa031>.
This package provides some functions to get Korean text sample from news articles in Naver which is popular news portal service <https://news.naver.com/> in Korea.
Modelling the vegetation, carbon, nitrogen and water dynamics of undisturbed open bog ecosystems in a temperate to sub-boreal climate. The executable of the model can downloaded from <https://github.com/jeroenpullens/NUCOMBog>.
Perform non-bipartite matching and matched randomization. A "bipartite" matching utilizes two separate groups, e.g. smokers being matched to nonsmokers or cases being matched to controls. A "non-bipartite" matching creates mates from one big group, e.g. 100 hospitals being randomized for a two-arm cluster randomized trial or 5000 children who have been exposed to various levels of secondhand smoke and are being paired to form a greater exposure vs. lesser exposure comparison. At the core of a non-bipartite matching is a N x N distance matrix for N potential mates. The distance between two units expresses a measure of similarity or quality as mates (the lower the better). The gendistance() and distancematrix() functions assist in creating this. The nonbimatch() function creates the matching that minimizes the total sum of distances between mates; hence, it is referred to as an "optimal" matching. The assign.grp() function aids in performing a matched randomization. Note bipartite matching can be performed using the prevent option in gendistance()'.
This package provides a collection of tools that allow users to perform critical steps in the process of assessing ecological niche evolution over phylogenies, with uncertainty incorporated explicitly in reconstructions. The method proposed here for ancestral reconstruction of ecological niches characterizes species niches using a bin-based approach that incorporates uncertainty in estimations. Compared to other existing methods, the approaches presented here reduce risk of overestimation of amounts and rates of ecological niche evolution. The main analyses include: initial exploration of environmental data in occurrence records and accessible areas, preparation of data for phylogenetic analyses, executing comparative phylogenetic analyses of ecological niches, and plotting for interpretations. Details on the theoretical background and methods used can be found in: Owens et al. (2020) <doi:10.1002/ece3.6359>, Peterson et al. (1999) <doi:10.1126/science.285.5431.1265>, Soberón and Peterson (2005) <doi:10.17161/bi.v2i0.4>, Peterson (2011) <doi:10.1111/j.1365-2699.2010.02456.x>, Barve et al. (2011) <doi:10.1111/ecog.02671>, Machado-Stredel et al. (2021) <doi:10.21425/F5FBG48814>, Owens et al. (2013) <doi:10.1016/j.ecolmodel.2013.04.011>, Saupe et al. (2018) <doi:10.1093/sysbio/syx084>, and Cobos et al. (2021) <doi:10.1111/jav.02868>.
Calculates a cumulative summation nonparametric extended median test based on the work of Brown & Schaffer (2020) <DOI:10.1080/03610926.2020.1738492>. It then generates a control chart to assess processes and determine if any streams are out of control.
This package implements network analysis and graph theory measures used in neuroscience, cognitive science, and psychology. Methods include various filtering methods and approaches such as threshold, dependency (Kenett, Tumminello, Madi, Gur-Gershgoren, Mantegna, & Ben-Jacob, 2010 <doi:10.1371/journal.pone.0015032>), Information Filtering Networks (Barfuss, Massara, Di Matteo, & Aste, 2016 <doi:10.1103/PhysRevE.94.062306>), and Efficiency-Cost Optimization (Fallani, Latora, & Chavez, 2017 <doi:10.1371/journal.pcbi.1005305>). Brain methods include the recently developed Connectome Predictive Modeling (see references in package). Also implements several network measures including local network characteristics (e.g., centrality), community-level network characteristics (e.g., community centrality), global network characteristics (e.g., clustering coefficient), and various other measures associated with the reliability and reproducibility of network analysis.
Essentials for PK/PD (pharmacokinetics/pharmacodynamics) such as area under the curve, (geometric) coefficient of variation, and other calculations that are not part of base R. This is not a noncompartmental analysis (NCA) package.
Predicting the structure of a graph including new nodes and edges using a time series of graphs. Flux balance analysis, a linear and integer programming technique used in biochemistry is used with time series prediction methods to predict the graph structure at a future time point Kandanaarachchi (2025) <doi:10.48550/arXiv.2507.05806>.
Includes assorted tools for network analysis. Bridge centrality; goldbricker; MDS, PCA, & eigenmodel network plotting.
It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.