Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Four methods for mediation analysis with missing data: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included. Bootstrap confidence intervals for mediation effects are obtained. The robust method is also implemented for TS-ML. Since version 1.4, bmem adds the capability to conduct power analysis for mediation models. Details about the methods used can be found in these articles. Zhang and Wang (2003) <doi:10.1007/s11336-012-9301-5>. Zhang (2014) <doi:10.3758/s13428-013-0424-0>.
The Bayesian Federated Inference ('BFI') method combines inference results obtained from local data sets in the separate centers. In this version of the package, the BFI methodology is programmed for linear, logistic and survival regression models. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for survival models, see Pazira, Massa, Weijers, Coolen and Jonker (2025) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous populations, see Jonker, Pazira and Coolen (2025) <doi:10.1017/rsm.2025.6>.
This package implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.
Computation of the minimum sample size using the Average Coverage Criterion or the Average Length Criterion for estimating binomial proportions using beta prior distributions. For more details see Costa (2025) <DOI:10.1007/978-3-031-72215-8_14>.
Fit Bayesian multivariate GARCH models using Stan for full Bayesian inference. Generate (weighted) forecasts for means, variances (volatility) and correlations. Currently DCC(P,Q), CCC(P,Q), pdBEKK(P,Q), and BEKK(P,Q) parameterizations are implemented, based either on a multivariate gaussian normal or student-t distribution. DCC and CCC models are based on Engle (2002) <doi:10.1198/073500102288618487> and Bollerslev (1990). The BEKK parameterization follows Engle and Kroner (1995) <doi:10.1017/S0266466600009063> while the pdBEKK as well as the estimation approach for this package is described in Rast et al. (2020) <doi:10.31234/osf.io/j57pk>. The fitted models contain rstan objects and can be examined with rstan functions.
This package implements bridge models for nowcasting and forecasting macroeconomic variables by linking high-frequency indicator variables (e.g., monthly data) to low-frequency target variables (e.g., quarterly GDP). Simplifies forecasting and aggregating indicator variables to match the target frequency, enabling timely predictions ahead of official data releases. For more on bridge models, see Baffigi, A., Golinelli, R., & Parigi, G. (2004) <doi:10.1016/S0169-2070(03)00067-0>, Burri (2023) <https://www5.unine.ch/RePEc/ftp/irn/pdfs/WP23-02.pdf> or Schumacher (2016) <doi:10.1016/j.ijforecast.2015.07.004>.
MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions n à n. When n is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. With this package, we address these problems by means of six algorithms, being two of them original proposals: - Landmark MDS proposed by De Silva V. and JB. Tenenbaum (2004). - Interpolation MDS proposed by Delicado P. and C. Pachón-Garcà a (2021) <arXiv:2007.11919> (original proposal). - Reduced MDS proposed by Paradis E (2018). - Pivot MDS proposed by Brandes U. and C. Pich (2007) - Divide-and-conquer MDS proposed by Delicado P. and C. Pachón-Garcà a (2021) <arXiv:2007.11919> (original proposal). - Fast MDS, proposed by Yang, T., J. Liu, L. McMillan and W. Wang (2006).
This package provides a collection of functions for downloading and processing automatic weather station (AWS) data from INMET (Brazilâ s National Institute of Meteorology), designed to support the estimation of reference evapotranspiration (ETo). The package facilitates streamlined access to meteorological data and aims to simplify analyses in agricultural and environmental contexts.
Functionality for reliability estimates. For unidimensional tests: Coefficient alpha, Guttman's lambda-2/-4/-6, the Greatest lower bound and coefficient omega_u ('unidimensional') in a Bayesian and a frequentist version. For multidimensional tests: omega_t (total) and omega_h (hierarchical). The results include confidence and credible intervals, the probability of a coefficient being larger than a cutoff, and a check for the factor models, necessary for the omega coefficients. The method for the Bayesian unidimensional estimates, except for omega_u, is sampling from the posterior inverse Wishart for the covariance matrix based measures (see Murphy', 2007, <https://groups.seas.harvard.edu/courses/cs281/papers/murphy-2007.pdf>. The Bayesian omegas (u, t, and h) are obtained by Gibbs sampling from the conditional posterior distributions of (1) the single factor model, (2) the second-order factor model, (3) the bi-factor model, (4) the correlated factor model ('Lee', 2007, <doi:10.1002/9780470024737>).
Bayesian fitting and sensitivity analysis methods for adaptive spline surfaces described in <doi:10.18637/jss.v094.i08>. Built to handle continuous and categorical inputs as well as functional or scalar output. An extension of the methodology in Denison, Mallick and Smith (1998) <doi:10.1023/A:1008824606259>.
Visualizing the types and distribution of elements within bio-sequences. At the same time, We have developed a geom layer, geom_rrect(), that can generate rounded rectangles. No external references are used in the development of this package.
The goal of this method is to identify associations between bacteria and an environmental variable in 16S or other compositional data. The environmental variable is any variable which is measure for each microbiome sample, for example, a butyrate measurement paired with every sample in the data. Microbiome data is compositional, meaning that the total abundance of each sample sums to 1, and this introduces severe statistical distortions. This method takes a Bayesian approach to correcting for these statistical distortions, in which the total abundance is treated as an unknown variable. This package runs the python implementation using reticulate.
This package provides bias-corrected estimates for the regression coefficients of a marginal model estimated with generalized estimating equations. Details about the bias formula used are in Lunardon, N., Scharfstein, D. (2017) <doi:10.1002/sim.7366>.
Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) <doi:10.1037/met0000201>. For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) <doi:10.1080/10705511.2020.1745644>. For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) <doi:10.1111/bmsp.12110>; Hoijtink, Gu, & Mulder, J. (2019) <doi:10.1111/bmsp.12145>; Hoijtink, Gu, Mulder, & Rosseel, (2019) <doi:10.31234/osf.io/q6h5w>.
Fit and simulate bivariate correlated frailty models with proportional hazard structure. Frailty distributions, such as gamma and lognormal models are supported for semiparametric procedures. Frailty variances of the two subjects can be varied or equal. Details on the models are available in book of Wienke (2011,ISBN:978-1-4200-7388-1). Bivariate gamma fit is obtained using the approach given in Iachine (1995) with modifications. Lognormal fit is based on the approach by Ripatti and Palmgren (2000) <doi:10.1111/j.0006-341X.2000.01016.x>. Frailty distributions, such as gamma, inverse gaussian and power variance frailty models are supported for parametric approach.
Variable/Feature selection in high or ultra-high dimensional settings has gained a lot of attention recently specially in cancer genomic studies. This package provides a Bayesian approach to tackle this problem, where it exploits mixture of point masses at zero and nonlocal priors to improve the performance of variable selection and coefficient estimation. product moment (pMOM) and product inverse moment (piMOM) nonlocal priors are implemented and can be used for the analyses. This package performs variable selection for binary response and survival time response datasets which are widely used in biostatistic and bioinformatics community. Benefiting from parallel computing ability, it reports necessary outcomes of Bayesian variable selection such as Highest Posterior Probability Model (HPPM), Median Probability Model (MPM) and posterior inclusion probability for each of the covariates in the model. The option to use Bayesian Model Averaging (BMA) is also part of this package that can be exploited for predictive power measurements in real datasets.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
Computational tools for outlier detection and influence diagnostics in meta-analysis (Noma et al. (2025) <doi:10.1101/2025.09.18.25336125>). Bootstrap distributions of influence statistics are computed, and explicit thresholds for identifying outliers are provided. These methods can also be applied to the analysis of influential centers or regions in multicenter or multiregional clinical trials (Aoki and Noma (2021) <doi:10.1080/24709360.2021.1921944>, Nakamura and Noma (2021) <doi:10.5691/jjb.41.117>).
Data on multiple individuals through time are often sampled at times that differ between persons. Irregular observation times can severely complicate the statistical analysis of the data. The broken stick model approximates each subjectâ s trajectory by one or more connected line segments. The times at which segments connect (breakpoints) are identical for all subjects and under control of the user. A well-fitting broken stick model effectively transforms individual measurements made at irregular times into regular trajectories with common observation times. Specification of the model requires three variables: time, measurement and subject. The model is a special case of the linear mixed model, with time as a linear B-spline and subject as the grouping factor. The main assumptions are: subjects are exchangeable, trajectories between consecutive breakpoints are straight, random effects follow a multivariate normal distribution, and unobserved data are missing at random. The package contains functions for fitting the broken stick model to data, for predicting curves in new data and for plotting broken stick estimates. The package supports two optimization methods, and includes options to structure the variance-covariance matrix of the random effects. The analyst may use the software to smooth growth curves by a series of connected straight lines, to align irregularly observed curves to a common time grid, to create synthetic curves at a user-specified set of breakpoints, to estimate the time-to-time correlation matrix and to predict future observations. See <doi:10.18637/jss.v106.i07> for additional documentation on background, methodology and applications.
Survey systems and other third-party data sources commonly use non-standard representations of logical values when it comes to qualitative data - "Yes", "No" and "N/A", say. batman is a package designed to seamlessly convert these into logicals. It is highly localised, and contains equivalents to boolean values in languages including German, French, Spanish, Italian, Turkish, Chinese and Polish.
Fit two-regime threshold autoregressive (TAR) models by Markov chain Monte Carlo methods.
Tool for quantitative research in scientometrics and bibliometrics. It implements the comprehensive workflow for science mapping analysis proposed in Aria M. and Cuccurullo C. (2017) <doi:10.1016/j.joi.2017.08.007>. bibliometrix provides various routines for importing bibliographic data from SCOPUS', Clarivate Analytics Web of Science (<https://www.webofknowledge.com/>), Digital Science Dimensions (<https://www.dimensions.ai/>), OpenAlex (<https://openalex.org/>), Cochrane Library (<https://www.cochranelibrary.com/>), Lens (<https://lens.org>), and PubMed (<https://pubmed.ncbi.nlm.nih.gov/>) databases, performing bibliometric analysis and building networks for co-citation, coupling, scientific collaboration and co-word analysis.
Utilities dedicated to the analysis of biological sequences by metric MultiDimensional Scaling with projection of supplementary data. It contains functions for reading multiple sequence alignment files, calculating distance matrices, performing metric multidimensional scaling and visualizing results.
This package contains a split population survival estimator that models the misclassification probability of failure versus right-censored events. The split population survival estimator is described in Bagozzi et al. (2019) <doi:10.1017/pan.2019.6>.