PaIRKAT is model framework for assessing statistical relationships between networks of metabolites (pathways) and an outcome of interest (phenotype). PaIRKAT queries the KEGG database to determine interactions between metabolites from which network connectivity is constructed. This model framework improves testing power on high dimensional data by including graph topography in the kernel machine regression setting. Studies on high dimensional data can struggle to include the complex relationships between variables. The semi-parametric kernel machine regression model is a powerful tool for capturing these types of relationships. They provide a framework for testing for relationships between outcomes of interest and high dimensional data such as metabolomic, genomic, or proteomic pathways. PaIRKAT uses known biological connections between high dimensional variables by representing them as edges of ‘graphs’ or ‘networks.’ It is common for nodes (e.g. metabolites) to be disconnected from all others within the graph, which leads to meaningful decreases in testing power whether or not the graph information is included. We include a graph regularization or ‘smoothing’ approach for managing this issue.
The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.
SCANVIS is a set of annotation-dependent tools for analyzing splice junctions and their read support as predetermined by an alignment tool of choice (for example, STAR aligner). SCANVIS assesses each junction's relative read support (RRS) by relating to the context of local split reads aligning to annotated transcripts. SCANVIS also annotates each splice junction by indicating whether the junction is supported by annotation or not, and if not, what type of junction it is (e.g. exon skipping, alternative 5 or 3 events, Novel Exons). Unannotated junctions are also futher annotated by indicating whether it induces a frame shift or not. SCANVIS includes a visualization function to generate static sashimi-style plots depicting relative read support and number of split reads using arc thickness and arc heights, making it easy for users to spot well-supported junctions. These plots also clearly delineate unannotated junctions from annotated ones using designated color schemes, and users can also highlight splice junctions of choice. Variants and/or a read profile are also incoroporated into the plot if the user supplies variants in bed format and/or the BAM file. One further feature of the visualization function is that users can submit multiple samples of a certain disease or cohort to generate a single plot - this occurs via a "merge" function wherein junction details over multiple samples are merged to generate a single sashimi plot, which is useful when contrasting cohorots (eg. disease vs control).
To date, thousands of single nucleotide polymorphisms (SNPs) have been found to be associated with complex traits and diseases. However, the vast majority of these disease-associated SNPs lie in the non-coding part of the genome, and are likely to affect regulatory elements, such as enhancers and promoters, rather than function of a protein. Thus, to understand the molecular mechanisms underlying genetic traits and diseases, it becomes increasingly important to study the effect of a SNP on nearby molecular traits such as chromatin environment or transcription factor (TF) binding. Towards this aim, we developed SNPhood, a user-friendly *Bioconductor* R package to investigate and visualize the local neighborhood of a set of SNPs of interest for NGS data such as chromatin marks or transcription factor binding sites from ChIP-Seq or RNA- Seq experiments. SNPhood comprises a set of easy-to-use functions to extract, normalize and summarize reads for a genomic region, perform various data quality checks, normalize read counts using additional input files, and to cluster and visualize the regions according to the binding pattern. The regions around each SNP can be binned in a user-defined fashion to allow for analysis of very broad patterns as well as a detailed investigation of specific binding shapes. Furthermore, SNPhood supports the integration with genotype information to investigate and visualize genotype-specific binding patterns. Finally, SNPhood can be employed for determining, investigating, and visualizing allele-specific binding patterns around the SNPs of interest.
Docco in Ruby
tools for building book.
Various databases of microRNA Targets.
Converts CSS files from left-to-right to right-to-left
This package provides C and C++ HDF5 libraries for use in R packages.
This package provides a generic infrastructure for creating and using R package registries.
RRBS data set comprising 12 samples with simulated differentially methylated regions (DMRs).
This package models a RESTful service as if it were a nested R list.
This package implements a DBI-compliant interface to MariaDB and MySQL databases.
This package contains the program ttf2pt1, for use with the extrafont package.
Roxygen2 is a Doxygen-like in-source documentation system for Rd, collation, and NAMESPACE files.
This package provides a package containing an environment representing the RN_U34.CDF file.
The package provides functions to read raw RT-qPCR data of different platforms.
This package provides a package containing an environment representing the RT_U34.cdf file.
This package provides a suite of classes and functions for randomizing patients in clinical trials.
This package provides plotting functions, frameshift detection and parsing of genetic sequencing data from ribosome profiling experiments.
Affymetrix Affymetrix RN_U34 Array annotation data (chip rnu34) assembled using data from public repositories.
Affymetrix Affymetrix RT_U34 Array annotation data (chip rtu34) assembled using data from public repositories.
A fast and very smart autolinking library that acts as a drop-in replacement for Rails `auto_link`
This package provides wrappers on regexpr and gregexpr to return the match results in tidy data frames.