This package provides a PNAS'-alike style for rmarkdown', derived from the Proceedings of the National Academy of Sciences of the United States of America ('PNAS') LaTeX style, and adapted for use with markdown and pandoc'.
Succinctly and correctly format statistical summaries of various models and tests (F-test, Chi-Sq-test, Fisher-test, T-test, and rank-significance). This package also includes empirical tests, such as Monte Carlo and bootstrap distribution estimates.
Perform meta-analysis of single-case experiments, including calculating various effect size measures (SMD, PND, PEM and NAP) and probability combining (additive and multiplicative method), as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>.
This package provides a simple wrapper to easily design vanilla deep neural networks using Tensorflow'/'Keras backend for regression, classification and multi-label tasks, with some tweaks and tricks (skip shortcuts, embedding, feature selection and anomaly detection).
Counting election votes and determining election results by different methods, including the single transferable vote or ranked choice, approval, score, plurality, condorcet and two-round runoff methods (Raftery et al., 2021 <doi:10.32614/RJ-2021-086>).
Analyze given data frame with multiple endpoints and return Kaplan-Meier survival probabilities together with the specified confidence interval. See Nabipoor M, Westerhout CM, Rathwell S, and Bakal JA (2023) <doi:10.1186/s12874-023-01857-0>.
R clients to the Web of Science and InCites <https://clarivate.com/products/data-integration/> APIs, which allow you to programmatically download publication and citation data indexed in the Web of Science and InCites databases.
Assigning probability scores to protein interactions captured in affinity purification mass spectrometry (AP-MS) expriments to infer protein-protein interactions. The output would facilitate non-specific background removal as contaminants are commonly found in AP-MS data.
This package provides a framework for processing and visualization of chromatographically separated and single-spectra mass spectral data. It imports from AIA/ANDI NetCDF, mzXML, mzData and mzML files. It preprocesses data for high-throughput, untargeted analyte profiling.
This package provides a system for organizing column names in data. It is aimed at supporting a prefix-based and suffix-based column naming scheme. It extends dplyr functionality to add ordering by function and more explicit renaming.
GAMs, GAMMs and other generalized ridge regression with multiple smoothing parameter estimation by GCV, REML or UBRE/AIC. The library includes a gam() function, a wide variety of smoothers, JAGS support and distributions beyond the exponential family.
Automated performance of common transformations used to fulfill parametric assumptions of normality and identification of the best performing method for the user. Output for various normality tests (Thode, 2002) corresponding to the best performing method and a descriptive statistical report of the input data in its original units (5-number summary and mathematical moments) are also presented. Lastly, the Rankit, an empirical normal quantile transformation (ENQT) (Soloman & Sawilowsky, 2009), is provided to accommodate non-standard use cases and facilitate adoption. <DOI: 10.1201/9780203910894>. <DOI: 10.22237/jmasm/1257034080>.
Assists in statistical model building to find optimal and semi-optimal higher order interactions and best subsets. Uses the lm(), glm(), and other R functions to fit models generated from a feasible solution algorithm. Discussed in Subset Selection in Regression, A Miller (2002). Applied and explained for least median of squares in Hawkins (1993) <doi:10.1016/0167-9473(93)90246-P>. The feasible solution algorithm comes up with model forms of a specific type that can have fixed variables, higher order interactions and their lower order terms.
Toolkit for the analysis of multiple gene data (Jombart et al. 2017) <doi:10.1111/1755-0998.12567>. apex implements the new S4 classes multidna', multiphyDat and associated methods to handle aligned DNA sequences from multiple genes.
Calculate the area of triangles and polygons using the shoelace formula. Area may be signed, taking into account path orientation, or unsigned, ignoring path orientation. The shoelace formula is described at <https://en.wikipedia.org/wiki/Shoelace_formula>.
Simulate, estimate and forecast a wide range of regression based dynamic models for bounded time series, covering the most commonly applied models in the literature. The main calculations are done in FORTRAN, which translates into very fast algorithms.
Solves system of linear equations using (preconditioned) conjugate gradient algorithm, with improved efficiency using Armadillo templated C++ linear algebra library, and flexibility for user-specified preconditioning method. Please check <https://github.com/styvon/cPCG> for latest updates.
Estimation of counterfactual outcomes for multiple values of continuous interventions at different time points, and plotting of causal dose-response curves. Details are given in Schomaker, McIlleron, Denti, Diaz (2024) <doi:10.48550/arXiv.2305.06645>.
The Citation File Format version 1.2.0 <doi:10.5281/zenodo.5171937> is a human and machine readable file format which provides citation metadata for software. This package provides core utilities to generate and validate this metadata.
Applies dynamic structural equation models to time-series data with generic and simplified specification for simultaneous and lagged effects. Methods are described in Thorson et al. (2024) "Dynamic structural equation models synthesize ecosystem dynamics constrained by ecological mechanisms.".
This package implements the daily based Morgan-Morgan-Finney (DMMF) soil erosion model (Choi et al., 2017 <doi:10.3390/w9040278>) for estimating surface runoff and sediment budgets from a field or a catchment on a daily basis.
Model fitting and evaluation tools for double generalized linear models (DGLMs). This class of models uses one generalized linear model (GLM) to fit the specified response and a second GLM to fit the deviance of the first model.
Presents a statistical method that uses a recursive algorithm for signal extraction. The method handles a non-parametric estimation for the correlation of the errors. See "Krivobokova", "Serra", "Rosales" and "Klockmann" (2021) <arXiv:1812.06948> for details.
Feature Ordering by Conditional Independence (FOCI) is a variable selection algorithm based on the measure of conditional dependence. For more information, see the paper: Azadkia and Chatterjee (2019),"A simple measure of conditional dependence" <arXiv:1910.12327>.