The package lets you change page layout parameters in small steps over a range of values using options. It can set \textwidth appropriately for the main fount, and ensure that the text fits inside the printable area of a printer. An rmpage-formatted document can be typeset identically without rmpage after a single cut and paste operation. Local configuration can set defaults: for all documents; and by class, by printer, and by paper size. The geometry package is better if you want to set page layout parameters to particular measurements.
This package provides functions for planning clinical trials subject to a delayed treatment effect using assurance-based methods. Includes two shiny applications for interactive exploration, simulation, and visualisation of trial designs and outcomes. The methodology is described in: Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024) "Assurance methods for designing a clinical trial with a delayed treatment effect" <doi:10.1002/sim.10136>, Salsbury JA, Oakley JE, Julious SA, Hampson LV (2024) "Adaptive clinical trial design with delayed treatment effects using elicited prior distributions" <doi:10.48550/arXiv.2509.07602>.
Use multi-state splitting to apply Adaptive-Dynamic PCA (ADPCA) to data generated from a continuous-time multivariate industrial or natural process. Employ PCA-based dimension reduction to extract linear combinations of relevant features, reducing computational burdens. For a description of ADPCA, see <doi:10.1007/s00477-016-1246-2>, the 2016 paper from Kazor et al. The multi-state application of ADPCA is from a manuscript under current revision entitled "Multi-State Multivariate Statistical Process Control" by Odom, Newhart, Cath, and Hering, and is expected to appear in Q1 of 2018.
Analyzing soil food webs or any food web measured at equilibrium. The package calculates carbon and nitrogen fluxes and stability properties using methods described by Hunt et al. (1987) <doi:10.1007/BF00260580>, de Ruiter et al. (1995) <doi:10.1126/science.269.5228.1257>, Holtkamp et al. (2011) <doi:10.1016/j.soilbio.2010.10.004>, and Buchkowski and Lindo (2021) <doi:10.1111/1365-2435.13706>. The package can also manipulate the structure of the food web as well as simulate food webs away from equilibrium and run decomposition experiments.
OpenFabrics Interfaces (OFI) is a framework focused on exporting fabric communication services to applications. OFI is best described as a collection of libraries and applications used to export fabric services. The key components of OFI are: application interfaces, provider libraries, kernel services, daemons, and test applications.
Libfabric is a core component of OFI. It is the library that defines and exports the user-space API of OFI, and is typically the only software that applications deal with directly. It works in conjunction with provider libraries, which are often integrated directly into libfabric.
This package provides infrastructure to store and manage all aspects related to a complete proteomics or metabolomics mass spectrometry (MS) experiment. The MsExperiment package provides light-weight and flexible containers for MS experiments building on the new MS infrastructure provided by the Spectra, QFeatures and related packages. Along with raw data representations, links to original data files and sample annotations, additional metadata or annotations can also be stored within the MsExperiment container. To guarantee maximum flexibility only minimal constraints are put on the type and content of the data within the containers.
MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
This package provides tools for estimating censored Almost Ideal (AI) and Quadratic Almost Ideal (QUAI) demand systems using Maximum Likelihood Estimation (MLE). It includes functions for calculating demand share equations and the truncated log-likelihood function for a system of equations, incorporating demographic variables. The package is designed to handle censored data, where some observations may be zero due to non-purchase of certain goods. Package also contains a procedure to approximate demand elasticities numerically and estimate standard errors via Delta Method. It is particularly useful for applied researchers analyzing household consumption data.
Genotyping the population using next generation sequencing data is essentially important for the rare variant detection. In order to distinguish the genomic structural variation from sequencing error, we propose a statistical model which involves the genotype effect through a latent variable to depict the distribution of non-reference allele frequency data among different samples and different genome loci, while decomposing the sequencing error into sample effect and positional effect. An ECM algorithm is implemented to estimate the model parameters, and then the genotypes and SNPs are inferred based on the empirical Bayes method.
Used for the design and analysis of a 2x2 factorial trial for a time-to-event endpoint. It performs power calculations and significance testing as well as providing estimates of the relevant hazard ratios and the corresponding 95% confidence intervals. Important reference papers include Slud EV. (1994) <https://www.ncbi.nlm.nih.gov/pubmed/8086609> Lin DY, Gong J, Gallo P, Bunn PH, Couper D. (2016) <DOI:10.1111/biom.12507> Leifer ES, Troendle JF, Kolecki A, Follmann DA. (2020) <https://github.com/EricSLeifer/factorial2x2/blob/master/Leifer%20et%20al.%20paper.pdf>.
Robust estimation methods for the mean vector, scatter matrix, and covariance matrix (if it exists) from data (possibly containing NAs) under multivariate heavy-tailed distributions such as angular Gaussian (via Tyler's method), Cauchy, and Student's t distributions. Additionally, a factor model structure can be specified for the covariance matrix. The latest revision also includes the multivariate skewed t distribution. The package is based on the papers: Sun, Babu, and Palomar (2014); Sun, Babu, and Palomar (2015); Liu and Rubin (1995); Zhou, Liu, Kumar, and Palomar (2019); Pascal, Ollila, and Palomar (2021).
Neural networks are applied to create a density value function which approximates density values for a data source. The trained neural network is analyzed for different levels. For each level metric subspaces with density values above a level are determined. The obtained set of metric subspaces and the trained neural network are assembled into a data model. A prerequisite is the definition of a data source, the generation of generative data and the calculation of density values. These tasks are executed using package ganGenerativeData <https://cran.r-project.org/package=ganGenerativeData>.
This function predicts item response probabilities and item responses using the item-focused tree model. The item-focused tree model combines logistic regression with recursive partitioning to detect Differential Item Functioning in dichotomous items. The model applies partitioning rules to the data, splitting it into homogeneous subgroups, and uses logistic regression within each subgroup to explain the data. Differential Item Functioning detection is achieved by examining potential group differences in item response patterns. This method is useful for understanding how different predictors, such as demographic or psychological factors, influence item responses across subgroups.
Implemented are the one-sided and two-sided multiple-direction logrank test for two-sample right censored data. In addition to the statistics p-values are calculated: 1. For the one-sided testing problem one p-value based on a wild bootstrap approach is determined. 2. In the two-sided case one p-value based on a chi-squared approximation and a second p-values based on a permutation approach are calculated. Ditzhaus, M. and Friedrich, S. (2018) <arXiv:1807.05504>. Ditzhaus, M. and Pauly, M. (2018) <arXiv:1808.05627>.
Facilitate the evaluation of forecasts in a convenient framework based on data.table. It allows user to to check their forecasts and diagnose issues, to visualise forecasts and missing data, to transform data before scoring, to handle missing forecasts, to aggregate scores, and to visualise the results of the evaluation. The package mostly focuses on the evaluation of probabilistic forecasts and allows evaluating several different forecast types and input formats. Find more information about the package in the Vignettes as well as in the accompanying paper, <doi:10.48550/arXiv.2205.07090>.
This package provides a package for inferring, comparing, and visualizing gene networks from single-cell RNA sequencing data. It integrates multiple methods (GENIE3, GRNBoost2, ZILGM, PCzinb, and JRF) for robust network inference, supports consensus building across methods or datasets, and provides tools for evaluating regulatory structure and community similarity. GRNBoost2 requires Python package arboreto which can be installed using init_py(install_missing = TRUE). This package includes adapted functions from ZILGM (Park et al., 2021), JRF (Petralia et al., 2015), and learn2count (Nguyen et al. 2023) packages with proper attribution under GPL-2 license.
Uses a calibrated model fusion approach to optimally combine multiple surrogate markers. Specifically, two initial estimates of optimal composite scores of the markers are obtained; the optimal calibrated combination of the two estimated scores is then constructed which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained (PTE) by the final combined score. The primary function, pte.estimate.multiple(), estimates the PTE of the identified combination of multiple surrogate markers. Details are described in Wang et al (2022) <doi:10.1111/biom.13677>.
Manages comparison of MCMC performance metrics from multiple MCMC algorithms. These may come from different MCMC configurations using the nimble package or from other packages. Plug-ins for JAGS via rjags and Stan via rstan are provided. It is possible to write plug-ins for other packages. Performance metrics are held in an MCMCresult class along with samples and timing data. It is easy to apply new performance metrics. Reports are generated as html pages with figures comparing sets of runs. It is possible to configure the html pages, including providing new figure components.
This package provides functions for fitting GEV and POT (via point process fitting) models for extremes in climate data, providing return values, return probabilities, and return periods for stationary and nonstationary models. Also provides differences in return values and differences in log return probabilities for contrasts of covariate values. Functions for estimating risk ratios for event attribution analyses, including uncertainty. Under the hood, many of the functions use functions from extRemes', including for fitting the statistical models. Details are given in Paciorek, Stone, and Wehner (2018) <doi:10.1016/j.wace.2018.01.002>.
It provides users with a wide range of tools to simulate, estimate, analyze, and visualize the dynamics of stochastic differential systems in both forms Ito and Stratonovich. Statistical analysis with parallel Monte Carlo and moment equations methods of SDEs <doi:10.18637/jss.v096.i02>. Enabled many searchers in different domains to use these equations to modeling practical problems in financial and actuarial modeling and other areas of application, e.g., modeling and simulate of first passage time problem in shallow water using the attractive center (Boukhetala K, 1996) ISBN:1-56252-342-2.
This package provides methods of Fundamental Analysis for Valuation of Equity included here serve as a quick reference for undergraduate courses on Stock Valuation and Chartered Financial Analyst Levels 1 and 2 Readings on Equity Valuation. Jerald E. Pinto (â Equity Asset Valuation (4th Edition)â , 2020, ISBN: 9781119628194). Chartered Financial Analyst Institute ("Chartered Financial Analyst Program Curriculum 2020 Level I Volumes 1-6. (Vol. 4, pp. 445-491)", 2019, ISBN: 9781119593577). Chartered Financial Analyst Institute ("Chartered Financial Analyst Program Curriculum 2020 Level II Volumes 1-6. (Vol. 4, pp. 197-447)", 2019, ISBN: 9781119593614).
Efficient Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian estimation of time-varying parameter vector autoregressive models with stochastic volatility (TVP-VAR-SV) under shrinkage priors and dynamic shrinkage processes. Details on the TVP-VAR-SV model and the shrinkage priors can be found in Cadonna et al. (2020) <doi:10.3390/econometrics8020020>, details on the software can be found in Knaus et al. (2021) <doi:10.18637/jss.v100.i13>, while details on the dynamic shrinkage process can be found in Knaus and Frühwirth-Schnatter (2023) <doi:10.48550/arXiv.2312.10487>.
API client for ClimMob', an open source software for decentralized large-N trials with the tricot approach <https://climmob.net/>. Developed by van Etten et al. (2019) <doi:10.1017/S0014479716000739>, it turns the research paradigm on its head; instead of a few researchers designing complicated trials to compare several technologies in search of the best solutions for the target environment, it enables many participants to carry out reasonably simple experiments that taken together can offer even more information. ClimMobTools enables project managers to deep explore and analyse their ClimMob data in R.
This package provides a hybrid of the K-means algorithm and a Majorization-Minimization method to introduce a robust clustering. The reference paper is: Julien Mairal, (2015) <doi:10.1137/140957639>. The two most important functions in package MajMinKmeans are cluster_km() and cluster_MajKm(). Cluster_km() clusters data without Majorization-Minimization and cluster_MajKm() clusters data with Majorization-Minimization method. Both of these functions calculate the sum of squares (SS) of clustering. Another useful function is MajMinOptim(), which helps to find the optimum values of the Majorization-Minimization estimator.