The bivariate copula mixed model for meta-analysis of diagnostic test accuracy studies in Nikoloulopoulos (2015) <doi:10.1002/sim.6595> and Nikoloulopoulos (2018) <doi:10.1007/s10182-017-0299-y>. The vine copula mixed model for meta-analysis of diagnostic test accuracy studies accounting for disease prevalence in Nikoloulopoulos (2017) <doi:10.1177/0962280215596769> and also accounting for non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1515/ijb-2019-0107>. The hybrid vine copula mixed model for meta-analysis of diagnostic test accuracy case-control and cohort studies in Nikoloulopoulos (2018) <doi:10.1177/0962280216682376>. The D-vine copula mixed model for meta-analysis and comparison of two diagnostic tests in Nikoloulopoulos (2019) <doi:10.1177/0962280218796685>. The multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic tests with non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1177/0962280220913898>. The one-factor copula mixed model for joint meta-analysis of multiple diagnostic tests in Nikoloulopoulos (2022) <doi:10.1111/rssa.12838>. The multinomial six-variate 1-truncated D-vine copula mixed model for meta-analysis of two diagnostic tests accounting for within and between studies dependence in Nikoloulopoulos (2024) <doi:10.1177/09622802241269645>. The 1-truncated D-vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard (Nikoloulopoulos, 2025) <doi:10.1093/biomtc/ujaf037>.
Set of tools for analyzing vertical fuel continuity at the tree level using Airborne Laser Scanning data. The workflow consisted of: 1) calculating the vertical height profiles of each segmented tree; 2) identifying gaps and fuel layers; 3) estimating the distance between fuel layers; and 4) retrieving the fuel layers base height and depth. Additionally, other functions recalculate previous metrics after considering distances greater than certain threshold. Moreover, the package calculates: i) the percentage of Leaf Area Density comprised in each fuel layer, ii) remove fuel layers with Leaf Area Density (LAD) percentage less than 10, and iii) recalculate the distances among the reminder ones. On the other hand, it identifies the crown base height (CBH) based on different criteria: the fuel layer with the highest LAD percentage and the fuel layers located at the largest- and at the last-distance. When there is only one fuel layer, it also identifies the CBH performing a segmented linear regression (breaking points) on the cumulative sum of LAD as a function of height. Finally, a collection of plotting functions is developed to represent: i) the initial gaps and fuel layers; ii) the fuels base height, depths and gaps with distances greater than certain threshold and, iii) the CBH based on different criteria. The methods implemented in this package are original and have not been published elsewhere.
This package implements Gibbs sampling and Bayes factors for multinomial models with linear inequality constraints on the vector of probability parameters. As special cases, the model class includes models that predict a linear order of binomial probabilities (e.g., p[1] < p[2] < p[3] < .50) and mixture models assuming that the parameter vector p must be inside the convex hull of a finite number of predicted patterns (i.e., vertices). A formal definition of inequality-constrained multinomial models and the implemented computational methods is provided in: Heck, D.W., & Davis-Stober, C.P. (2019). Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference. Journal of Mathematical Psychology, 91, 70-87. <doi:10.1016/j.jmp.2019.03.004>. Inequality-constrained multinomial models have applications in the area of judgment and decision making to fit and test random utility models (Regenwetter, M., Dana, J., & Davis-Stober, C.P. (2011). Transitivity of preferences. Psychological Review, 118, 42â 56, <doi:10.1037/a0021150>) or to perform outcome-based strategy classification to select the decision strategy that provides the best account for a vector of observed choice frequencies (Heck, D.W., Hilbig, B.E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26â 40. <doi:10.1016/j.cogpsych.2017.05.003>).
Climate is a critical component limiting growing range of plant species, which also determines cultivar adaptation to a region. The evaluation of climate influence on fruit production is critical for decision-making in the design stage of orchards and vineyards and in the evaluation of the potential consequences of future climate. Bio- climatic indices and plant phenology are commonly used to describe the suitability of climate for growing quality fruit and to provide temporal and spatial information about regarding ongoing and future changes. fruclimadapt streamlines the assessment of climate adaptation and the identification of potential risks for grapevines and fruit trees. Procedures in the package allow to i) downscale daily meteorological variables to hourly values (Forster et al (2016) <doi:10.5194/gmd-9-2315-2016>), ii) estimate chilling and forcing heat accumulation (Miranda et al (2019) <https://ec.europa.eu/eip/agriculture/sites/default/files/fg30_mp5_phenology_critical_temperatures.pdf>), iii) estimate plant phenology (Schwartz (2012) <doi:10.1007/978-94-007-6925-0>), iv) calculate bioclimatic indices to evaluate fruit tree and grapevine adaptation (e.g. Badr et al (2017) <doi:10.3354/cr01532>), v) estimate the incidence of weather-related disorders in fruits (e.g. Snyder and de Melo-Abreu (2005, ISBN:92-5-105328-6) and vi) estimate plant water requirements (Allen et al (1998, ISBN:92-5-104219-5)).
The ts objects in R are managed using a very specific date format (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, depending on the frequency, for example). We focus solely on monthly and quarterly series to manage the dates of ts objects. The general idea is to offer a set of functions to manage this date format without it being too restrictive or too imprecise depending on the rounding. This is a compromise between simplicity, precision and use of the basic stats functions for creating and managing time series (ts(), window()). Les objets ts en R sont gérés par un format de date très particulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deuxième trimestre 2021 selon la fréquence par exemple). On se concentre uniquement sur les séries mensuelles et trimestrielles pour gérer les dates des objets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce format de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un compromis entre simplicité, précision et utilisation des fonctions du package stats de création et de gestion des séries temporelles (ts(), window()).
This package provides a Bayesian statistical model for estimating child (under-five age group) and adult (15-60 age group) mortality. The main challenge is how to combine and integrate these different time series and how to produce unified estimates of mortality rates during a specified time span. GPR is a Bayesian statistical model for estimating child and adult mortality rates which its data likelihood is mortality rates from different data sources such as: Death Registration System, Censuses or surveys. There are also various hyper-parameters for completeness of DRS, mean, covariance functions and variances as priors. This function produces estimations and uncertainty (95% or any desirable percentiles) based on sampling and non-sampling errors due to variation in data sources. The GP model utilizes Bayesian inference to update predicted mortality rates as a posterior in Bayes rule by combining data and a prior probability distribution over parameters in mean, covariance function, and the regression model. This package uses Markov Chain Monte Carlo (MCMC) to sample from posterior probability distribution by rstan package in R. Details are given in Wang H, Dwyer-Lindgren L, Lofgren KT, et al. (2012) <doi:10.1016/S0140-6736(12)61719-X>, Wang H, Liddell CA, Coates MM, et al. (2014) <doi:10.1016/S0140-6736(14)60497-9> and Mohammadi, Parsaeian, Mehdipour et al. (2017) <doi:10.1016/S2214-109X(17)30105-5>.
This package provides statistical methods and visualizations that are often used in reliability engineering. Comprises a compact and easily accessible set of methods and visualization tools that make the examination and adjustment as well as the analysis and interpretation of field data (and bench tests) as simple as possible. Non-parametric estimators like Median Ranks, Kaplan-Meier (Abernethy, 2006, <ISBN:978-0-9653062-3-2>), Johnson (Johnson, 1964, <ISBN:978-0444403223>), and Nelson-Aalen for failure probability estimation within samples that contain failures as well as censored data are included. The package supports methods like Maximum Likelihood and Rank Regression, (Genschel and Meeker, 2010, <DOI:10.1080/08982112.2010.503447>) for the estimation of multiple parametric lifetime distributions, as well as the computation of confidence intervals of quantiles and probabilities using the delta method related to Fisher's confidence intervals (Meeker and Escobar, 1998, <ISBN:9780471673279>) and the beta-binomial confidence bounds. If desired, mixture model analysis can be done with segmented regression and the EM algorithm. Besides the well-known Weibull analysis, the package also contains Monte Carlo methods for the correction and completion of imprecisely recorded or unknown lifetime characteristics. (Verband der Automobilindustrie e.V. (VDA), 2016, <ISSN:0943-9412>). Plots are created statically ('ggplot2') or interactively ('plotly') and can be customized with functions of the respective visualization package. The graphical technique of probability plotting as well as the addition of regression lines and confidence bounds to existing plots are supported.
This package provides a chemical speciation and toxicity prediction model for the toxicity of metals to aquatic organisms. The Biotic Ligand Model (BLM) engine was originally programmed in PowerBasic by Robert Santore and others. The main way the BLM can be used is to predict the toxicity of a metal to an organism with a known sensitivity (i.e., it is known how much of that metal must accumulate on that organism's biotic ligand to cause a physiological effect in a certain percentage of the population, such as a 20% loss in reproduction or a 50% mortality rate). The second way the BLM can be used is to estimate the chemical speciation of the metal and other constituents in water, including estimating the amount of metal accumulated to an organism's biotic ligand during a toxicity test. In the first application of the BLM, the amount of metal associated with a toxicity endpoint, or regulatory limit will be predicted, while in the second application, the amount of metal is known and the portions of that metal that exist in various forms will be determined. This version of the engine has been re-structured to perform the calculations in a different way that will make it more efficient in R, while also making it more flexible and easier to maintain in the future. Because of this, it does not currently match the desktop model exactly, but we hope to improve this comparability in the future.
This is an evolving and growing collection of tools for the quantification, assessment, and comparison of shape and pattern. This collection provides tools for: (1) the spatial decomposition of planar shapes using ShrinkShape to incrementally shrink shapes to extinction while computing area, perimeter, and number of parts at each iteration of shrinking; the spectra of results are returned in graphic and tabular formats (Remmel 2015) <doi:10.1111/cag.12222>, (2) simulating landscape patterns, (3) provision of tools for estimating composition and configuration parameters from a categorical (binary) landscape map (grid) and then simulates a selected number of statistically similar landscapes. Class-focused pattern metrics are computed for each simulated map to produce empirical distributions against which statistical comparisons can be made. The code permits the analysis of single maps or pairs of maps (Remmel and Fortin 2013) <doi:10.1007/s10980-013-9905-x>, (4) counting the number of each first-order pattern element and converting that information into both frequency and empirical probability vectors (Remmel 2020) <doi:10.3390/e22040420>, and (5) computing the porosity of raster patches <doi:10.3390/su10103413>. NOTE: This is a consolidation of existing packages ('PatternClass', ShapePattern') to begin warehousing all shape and pattern code in a common package. Additional utility tools for handling data are provided and this package will be added to as more tools are created, cleaned-up, and documented. Note that all future developments will appear in this package and that PatternClass will eventually be archived.
In social and educational settings, the use of Artificial Intelligence (AI) is a challenging task. Relevant data is often only available in handwritten forms, or the use of data is restricted by privacy policies. This often leads to small data sets. Furthermore, in the educational and social sciences, data is often unbalanced in terms of frequencies. To support educators as well as educational and social researchers in using the potentials of AI for their work, this package provides a unified interface for neural nets in PyTorch to deal with natural language problems. In addition, the package ships with a shiny app, providing a graphical user interface. This allows the usage of AI for people without skills in writing python/R scripts. The tools integrate existing mathematical and statistical methods for dealing with small data sets via pseudo-labeling (e.g. Cascante-Bonilla et al. (2020) <doi:10.48550/arXiv.2001.06001>) and imbalanced data via the creation of synthetic cases (e.g. Islam et al. (2012) <doi:10.1016/j.asoc.2021.108288>). Performance evaluation of AI is connected to measures from content analysis which educational and social researchers are generally more familiar with (e.g. Berding & Pargmann (2022) <doi:10.30819/5581>, Gwet (2014) <ISBN:978-0-9708062-8-4>, Krippendorff (2019) <doi:10.4135/9781071878781>). Estimation of energy consumption and CO2 emissions during model training is done with the python library codecarbon'. Finally, all objects created with this package allow to share trained AI models with other people.
This package provides functions for evaluating and testing asset pricing models, including estimation and testing of factor risk premia, selection of "strong" risk factors (factors having nonzero population correlation with test asset returns), heteroskedasticity and autocorrelation robust covariance matrix estimation and testing for model misspecification and identification. The functions for estimating and testing factor risk premia implement the Fama-MachBeth (1973) <doi:10.1086/260061> two-pass approach, the misspecification-robust approaches of Kan-Robotti-Shanken (2013) <doi:10.1111/jofi.12035>, and the approaches based on tradable factor risk premia of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683>. The functions for selecting the "strong" risk factors are based on the Oracle estimator of Quaini-Trojani-Yuan (2023) <doi:10.2139/ssrn.4574683> and the factor screening procedure of Gospodinov-Kan-Robotti (2014) <doi:10.2139/ssrn.2579821>. The functions for evaluating model misspecification implement the HJ model misspecification distance of Kan-Robotti (2008) <doi:10.1016/j.jempfin.2008.03.003>, which is a modification of the prominent Hansen-Jagannathan (1997) <doi:10.1111/j.1540-6261.1997.tb04813.x> distance. The functions for testing model identification specialize the Kleibergen-Paap (2006) <doi:10.1016/j.jeconom.2005.02.011> and the Chen-Fang (2019) <doi:10.1111/j.1540-6261.1997.tb04813.x> rank test to the regression coefficient matrix of test asset returns on risk factors. Finally, the function for heteroskedasticity and autocorrelation robust covariance estimation implements the Newey-West (1994) <doi:10.2307/2297912> covariance estimator.
This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python. The melting temperature of nucleic acid sequences can be calculated in three method, the Wallace rule (Thein & Wallace (1986) <doi:10.1016/S0140-6736(86)90739-7>), empirical formulas based on G and C content (Marmur J. (1962) <doi:10.1016/S0022-2836(62)80066-7>, Schildkraut C. (2010) <doi:10.1002/bip.360030207>, Wetmur J G (1991) <doi:10.3109/10409239109114069>, Untergasser,A. (2012) <doi:10.1093/nar/gks596>, von Ahsen N (2001) <doi:10.1093/clinchem/47.11.1956>) and nearest neighbor thermodynamics (Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>, Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>, Allawi H (1998) <doi:10.1093/nar/26.11.2694>, SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>, Freier S (1986) <doi:10.1073/pnas.83.24.9373>, Xia T (1998) <doi:10.1021/bi9809425>, Chen JL (2012) <doi:10.1021/bi3002709>, Bommarito S (2000) <doi:10.1093/nar/28.9.1929>, Turner D H (2010) <doi:10.1093/nar/gkp892>, Sugimoto N (1995) <doi:10.1016/S0048-9697(98)00088-6>, Allawi H T (1997) <doi:10.1021/bi962590c>, Santalucia N (2005) <doi:10.1093/nar/gki918>), and it can also be corrected with salt ions and chemical compound (SantaLucia J (1996) <doi:10.1021/bi951907q>, SantaLucia J(1998) <doi:10.1073/pnas.95.4.1460>, Owczarzy R (2004) <doi:10.1021/bi034621r>, Owczarzy R (2008) <doi:10.1021/bi702363u>).
Intended to be used by the United States Copyright Office Product Management Division Business Analysts. Include algorithms for the United States Copyright Office Product Management Division SR Audit Data dataset. The algorithm takes in the SR Audit Data excel file and reformat the spreadsheet such that the values and variables fit the format of the online database. Support functions in this package include clean_str(), which cleans instances of variable AUDIT_LOG; clean_data_to_excel(), which cleans and output the reorganized SR Audit Data dataset in excel format; clean_data_to_dataframe(), which cleans and stores the reorganized SR Audit Data data set to a data frame; format_from_excel(), which reads in the outputted excel file from the clean_data_to_excel() function and formats and returns the data as a dictionary that uses FIELD types as keys and NON-FIELD types as the values of those keys. format_from_dataframe(), which reads in the outputted data frame from the clean_data_to_dataframe() function and formats and returns the data as a dictionary that uses FIELD types as keys and NON-FIELD types as the values of those keys; support_function(), which takes in the dictionary outputted either from the format_from_dataframe() or format_from_excel() function and returns the data as a formatted data frame according to the original U.S. Copyright Office SR Audit Data online database. The main function of this package is clean_format_all(), which takes in an excel file and returns the formatted data into a new excel and text file according to the format from the U.S. Copyright Office SR Audit Data online database.
Quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. The output of this function is a data frame that consists of four rows containing the following information: (1) the overall IAT effect size for the participant's dataset, (2) the effect size calculated for odd trials only, (3) the effect size calculated for even trials only, and (4) the proportion of trials with reaction times under 300ms (which is important for exclusion purposes). Items (2) and (3) allow for a measure of the internal consistency of the IAT. Specifically, you can use the subsetted IAT effect sizes for odd and even trials to calculate Cronbach's alpha across participants in the sample. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 220, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). A sample dataset (titled sampledata') is included in this package to practice with.
Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.
Algorithms for checking the accuracy of a clustering result with known classes, computing cluster validity indices, and generating plots for comparing them. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). The details of the indices in this package can be found in: J. C. Bezdek, M. Moshtaghi, T. Runkler, C. Leckie (2016) <doi:10.1109/TFUZZ.2016.2540063>, T. Calinski, J. Harabasz (1974) <doi:10.1080/03610927408827101>, C. H. Chou, M. C. Su, E. Lai (2004) <doi:10.1007/s10044-004-0218-1>, D. L. Davies, D. W. Bouldin (1979) <doi:10.1109/TPAMI.1979.4766909>, J. C. Dunn (1973) <doi:10.1080/01969727308546046>, F. Haouas, Z. Ben Dhiaf, A. Hammouda, B. Solaiman (2017) <doi:10.1109/FUZZ-IEEE.2017.8015651>, M. Kim, R. S. Ramakrishna (2005) <doi:10.1016/j.patrec.2005.04.007>, S. H. Kwon (1998) <doi:10.1049/EL:19981523>, S. H. Kwon, J. Kim, S. H. Son (2021) <doi:10.1049/ell2.12249>, G. W. Miligan (1980) <doi:10.1007/BF02293907>, M. K. Pakhira, S. Bandyopadhyay, U. Maulik (2004) <doi:10.1016/j.patcog.2003.06.005>, M. Popescu, J. C. Bezdek, T. C. Havens, J. M. Keller (2013) <doi:10.1109/TSMCB.2012.2205679>, S. Saitta, B. Raphael, I. Smith (2007) <doi:10.1007/978-3-540-73499-4_14>, A. Starczewski (2017) <doi:10.1007/s10044-015-0525-8>, Y. Tang, F. Sun, Z. Sun (2005) <doi:10.1109/ACC.2005.1470111>, N. Wiroonsri (2024) <doi:10.1016/j.patcog.2023.109910>, N. Wiroonsri, O. Preedasawakul (2023) <doi:10.48550/arXiv.2308.14785>, C. H. Wu, C. S. Ouyang, L. W. Chen, L. W. Lu (2015) <doi:10.1109/TFUZZ.2014.2322495>, X. Xie, G. Beni (1991) <doi:10.1109/34.85677> and Rousseeuw (1987) and Kaufman and Rousseeuw(2009) <doi:10.1016/0377-0427(87)90125-7> and <doi:10.1002/9780470316801> C. Alok. (2010).
The main goal of the R package treeDbalance is to provide functions for the computation of several measurements of 3D node imbalance and their respective 3D tree imbalance indices, as well as to introduce the new phylo3D format for rooted 3D tree objects. Moreover, it encompasses an example dataset of 3D models of 63 beans in phylo3D format. Please note that this R package was developed alongside the project described in the manuscript Measuring 3D tree imbalance of plant models using graph-theoretical approaches by M. Fischer, S. Kersting, and L. Kühn (2023) <arXiv:2307.14537>, which provides precise mathematical definitions of the measurements. Furthermore, the package contains several helpful functions, for example, some auxiliary functions for computing the ancestors, descendants, and depths of the nodes, which ensures that the computations can be done in linear time. Most functions of treeDbalance require as input a rooted tree in the phylo3D format, an extended phylo format (as introduced in the R package ape 1.9 in November 2006). Such a phylo3D object must have at least two new attributes next to those required by the phylo format: node.coord', the coordinates of the nodes, as well as edge.weight', the literal weight or volume of the edges. Optional attributes are edge.diam', the diameter of the edges, and edge.length', the length of the edges. For visualization purposes one can also specify edge.type', which ranges from normal cylinder to bud to leaf, as well as edge.color to change the color of the edge depiction. This project was supported by the joint research project DIG-IT! funded by the European Social Fund (ESF), reference: ESF/14-BM-A55-0017/19, and the Ministry of Education, Science and Culture of Mecklenburg-Western Pomerania, Germany, as well as by the the project ArtIGROW, which is a part of the WIR!-Alliance ArtIFARM â Artificial Intelligence in Farming funded by the German Federal Ministry of Education and Research (FKZ: 03WIR4805).
Descriptive Statistics is essential for publishing articles. This package can perform descriptive statistics according to different data types. If the data is a continuous variable, the mean and standard deviation or median and quartiles are automatically output; if the data is a categorical variable, the number and percentage are automatically output. In addition, if you enter two variables in this package, the two variables will be described and their relationships will be tested automatically according to their data types. For example, if one of the two input variables is a categorical variable, another variable will be described hierarchically based on the categorical variable and the statistical differences between different groups will be compared using appropriate statistical methods. And for groups of more than two, the post hoc test will be applied. For more information on the methods we used, please see the following references: Libiseller, C. and Grimvall, A. (2002) <doi:10.1002/env.507>, Patefield, W. M. (1981) <doi:10.2307/2346669>, Hope, A. C. A. (1968) <doi:10.1111/J.2517-6161.1968.TB00759.X>, Mehta, C. R. and Patel, N. R. (1983) <doi:10.1080/01621459.1983.10477989>, Mehta, C. R. and Patel, N. R. (1986) <doi:10.1145/6497.214326>, Clarkson, D. B., Fan, Y. and Joe, H. (1993) <doi:10.1145/168173.168412>, Cochran, W. G. (1954) <doi:10.2307/3001616>, Armitage, P. (1955) <doi:10.2307/3001775>, Szabo, A. (2016) <doi:10.1080/00031305.2017.1407823>, David, F. B. (1972) <doi:10.1080/01621459.1972.10481279>, Joanes, D. N. and Gill, C. A. (1998) <doi:10.1111/1467-9884.00122>, Dunn, O. J. (1964) <doi:10.1080/00401706.1964.10490181>, Copenhaver, M. D. and Holland, B. S. (1988) <doi:10.1080/00949658808811082>, Chambers, J. M., Freeny, A. and Heiberger, R. M. (1992) <doi:10.1201/9780203738535-5>, Shaffer, J. P. (1995) <doi:10.1146/annurev.ps.46.020195.003021>, Myles, H. and Douglas, A. W. (1973) <doi:10.2307/2063815>, Rahman, M. and Tiwari, R. (2012) <doi:10.4236/health.2012.410139>, Thode, H. J. (2002) <doi:10.1201/9780203910894>, Jonckheere, A. R. (1954) <doi:10.2307/2333011>, Terpstra, T. J. (1952) <doi:10.1016/S1385-7258(52)50043-X>.
The data that is generated from independent and consecutive GillespieSSA runs for a generic biochemical network is formatted as rows and constitutes an observation. The first column of each row is the computed timestep for each run. Subsequent columns are used for the number of molecules of each participating molecular species or "metabolite" of a generic biochemical network. In this way TemporalGSSA', is a wrapper for the R-package GillespieSSA'. The number of observations must be at least 30. This will generate data that is statistically significant. TemporalGSSA', transforms this raw data into a simulation time-dependent and metabolite-specific trial. Each such trial is defined as a set of linear models (n >= 30) between a timestep and number of molecules for a metabolite. Each linear model is characterized by coefficients such as the slope, arbitrary constant, etc. The user must enter an integer from 1-4. These specify the statistical modality utilized to compute a representative timestep (mean, median, random, all). These arguments are mandatory and will be checked. Whilst, the numeric indicator "0" indicates suitability, "1" prompts the user to revise and re-enter their data. An optional logical argument controls the output to the console with the default being "TRUE" (curtailed) whilst "FALSE" (verbose). The coefficients of each linear model are averaged (mean slope, mean constant) and are incorporated into a metabolite-specific linear regression model as the dependent variable. The independent variable is the representative timestep chosen previously. The generated data is the imputed molecule number for an in silico experiment with (n >=30) observations. These steps can be replicated with multiple set of observations. The generated "technical replicates" can be statistically evaluated (mean, standard deviation) and will constitute simulation time-dependent molecules for each metabolite. For SSA-generated datasets with varying simulation times TemporalGSSA will generate a simulation time-dependent trajectory for each metabolite of the biochemical network under study. The relevant publication with the mathematical derivation of the algorithm is (2022, Journal of Bioinformatics and Computational Biology) <doi:10.1142/S0219720022500184>. The algorithm has been deployed in the following publications (2021, Heliyon) <doi:10.1016/j.heliyon.2021.e07466> and (2016, Journal of Theoretical Biology) <doi:10.1016/j.jtbi.2016.07.002>.
Electrical properties of resistor networks using matrix methods.
Various databases of microRNA Targets.
Rspec-core provides the RSpec test runner and example groups.
Rspec-core provides the RSpec test runner and example groups.
This package provides a fully YAML 1.2 compliant YAML parser.