Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is an implementation of model-based trees with global model parameters (PALM trees). The PALM tree algorithm is an extension to the MOB algorithm (implemented in the partykit package), where some parameters are fixed across all groups. Details about the method can be found in Seibold, Hothorn, Zeileis (2016) <arXiv:1612.07498>. The package offers coef(), logLik(), plot(), and predict() functions for PALM trees.
Converts English phrases to singular or plural form based on the length of an associated vector. Contains helper functions to create natural language lists from vectors and to include the length of a vector in natural language.
It creates a lattice plot to visualize panel or longitudinal data. The observed values are plotted as dots and the fitted values as lines, both against time. The plot is customizable and easy to edit, even if you do not know how to construct a lattice plot from scratch.
Metadata and package cache for CRAN-like repositories. This is a utility package to be used by package management tools that want to take advantage of caching.
This package provides a common problem faced by journal reviewers and authors is the question of whether the results of a replication study are consistent with the original published study. One solution to this problem is to examine the effect size from the original study and generate the range of effect sizes that could reasonably be obtained (due to random sampling) in a replication attempt (i.e., calculate a prediction interval). This package has functions that calculate the prediction interval for the correlation (i.e., r), standardized mean difference (i.e., d-value), and mean.
This package implements the PRIDIT (Principal Component Analysis applied to RIDITs') scoring system described in Brockett et al. (2002) <doi:10.1111/1539-6975.00027>. Provides functions for ridit scoring originally developed by Bross (1958) <doi:10.2307/2527727>, calculating PRIDIT weights, and computing final PRIDIT scores for multivariate analysis of ordinal data.
Programs to determine student grades and create examinations from Question banks. Programs will create numerous multiple choice exams, randomly shuffled, for different versions of same question list.
This package implements the methods proposed by Olley, G.S. and Pakes, A. (1996) <doi:10.2307/2171831>, Levinsohn, J. and Petrin, A. (2003) <doi:10.1111/1467-937X.00246>, Ackerberg, D.A. and Caves, K. and Frazer, G. (2015) <doi:10.3982/ECTA13408> and Wooldridge, J.M. (2009) <doi:10.1016/j.econlet.2009.04.026> for structural productivity estimation .
Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.
Fits the Poisson-Tweedie generalized linear mixed model described in Signorelli et al. (2021, <doi:10.1177/1471082X20936017>). Likelihood approximation based on adaptive Gauss Hermite quadrature rule.
Graphical methods testing multivariate normality assumption. Methods including assessing score function, and moment generating functions,independent transformations and linear transformations. For more details see Tran (2024),"Contributions to Multivariate Data Science: Assessment and Identification of Multivariate Distributions and Supervised Learning for Groups of Objects." , PhD thesis, <https://our.oakland.edu/items/c8942577-2562-4d2f-8677-cb8ec0bf6234>.
partitionMetric computes a distance between two partitions of a set.
This package provides a simple implementation of the Predictive Information Index ('PII').
For a multivariate dataset with independent Poisson measurement error, calculates principal components of transformed latent Poisson means. T. Kenney, T. Huang, H. Gu (2019) <arXiv:1904.11745>.
The permubiome R package was created to perform a permutation-based non-parametric analysis on microbiome data for biomarker discovery aims. This test executes thousands of comparisons in a pairwise manner, after a random shuffling of data into the different groups of study with a prior selection of the microbiome features with the largest variation among groups. Previous to the permutation test itself, data can be normalized according to different methods proposed to handle microbiome data ('proportions or Anders'). The median-based differences between groups resulting from the multiple simulations are fitted to a normal distribution with the aim to calculate their significance. A multiple testing correction based on Benjamini-Hochberg method (fdr) is finally applied to extract the differentially presented features between groups of your dataset. LATEST UPDATES: v1.1 and olders incorporates function to parse COLUMN format; v1.2 and olders incorporates -optimize- function to maximize evaluation of features with largest inter-class variation; v1.3 and olders includes the -size.effect- function to perform estimation statistics using the bootstrap-coupled approach implemented in the dabestr (>=0.3.0) R package. Current v1.3.2 fixed bug with "Class" recognition and updated dabestr functions.
The main goal of the psycho package is to provide tools for psychologists, neuropsychologists and neuroscientists, to facilitate and speed up the time spent on data analysis. It aims at supporting best practices and tools to format the output of statistical methods to directly paste them into a manuscript, ensuring statistical reporting standardization and conformity.
Fitting and testing probabilistic knowledge structures, especially the basic local independence model (BLIM, Doignon & Flamagne, 1999) and the simple learning model (SLM), using the minimum discrepancy maximum likelihood (MDML) method (Heller & Wickelmaier, 2013 <doi:10.1016/j.endm.2013.05.145>).
Includes functions to wrap most endpoints of the PaleobioDB API and to visualize and process the obtained fossil data. The API documentation for the Paleobiology Database can be found at <https://paleobiodb.org/data1.2/>.
Create an interactive pizza chart visualizing a specific player's statistics across various attributes in a sports dataset. The chart is constructed based on input parameters: data', a dataframe containing player data for any sports; player_stats_col', a vector specifying the names of the columns from the dataframe that will be used to create slices in the pizza chart, with statistics ranging between 0 and 100; name_col', specifying the name of the column in the dataframe that contains the player names; and player_name', representing the specific player whose statistics will be visualized in the chart, serving as the chart title.
It is often advantageous to test a hypothesis more than once in the context of propensity score analysis (Rosenbaum, 2012) <doi:10.1093/biomet/ass032>. The functions in this package facilitate bootstrapping for propensity score analysis (PSA). By default, bootstrapping using two classification tree methods (using rpart and ctree functions), two matching methods (using Matching and MatchIt packages), and stratification with logistic regression. A framework is described for users to implement additional propensity score methods. Visualizations are emphasized for diagnosing balance; exploring the correlation relationships between bootstrap samples and methods; and to summarize results.
Plots with high flexibility and easy handling, including informative regression diagnostics for many models.
The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 <doi:10.3389/fevo.2021.588292>) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.
This package contains a graphical user interface to generate the diagnostic plots proposed by Bauer (2005; <doi:10.1207/s15328007sem1204_1>), Pek & Chalmers (2015; <doi:10.1080/10705511.2014.937790>), and Pek, Chalmers, R. Kok, & Losardo (2015; <doi:10.3102/1076998615589129>) to investigate nonlinear bivariate relationships in latent regression models using structural equation mixture models (SEMMs).
This package contains sixteen moisture sorption isotherm models, which evaluate the fitness of adsorption and desorption curves for further understanding of the relationship between moisture content and water activity. Fitness evaluation is conducted through parameter estimation and error analysis. Moreover, graphical representation, hysteresis area estimation, and isotherm classification through the equation of Blahovec & Yanniotis (2009) <doi:10.1016/j.jfoodeng.2008.08.007> which is based on the classification system introduced by Brunauer et. al. (1940) <doi:10.1021/ja01864a025> are also included for the visualization of models and hysteresis.