Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides automated methods for generating initial parameter estimates in population pharmacokinetic modeling. The pipeline integrates adaptive single-point methods, naive pooled graphic approaches, noncompartmental analysis methods, and parameter sweeping across pharmacokinetic models. It estimates residual unexplained variability using either data-driven or fixed-fraction approaches and assigns pragmatic initial values for inter-individual variability. These strategies are designed to improve model robustness and convergence in nlmixr2 workflows. For more details see Huang Z, Fidler M, Lan M, Cheng IL, Kloprogge F, Standing JF (2025) <doi:10.1007/s10928-025-10000-z>.
Inference and dependence measure for the non-central squared Gaussian, Student, Clayton, Gumbel, and Frank copula models.The description of the methodology is taken from Section 3 of Nasri, Remillard and Bouezmarni (2019) <doi:10.1016/j.jmva.2019.03.007>.
Non-linear least squares regression with the Levenberg-Marquardt algorithm using multiple starting values for increasing the chance that the minimum found is the global minimum.
Social network analysis has become an essential tool in the study of complex systems. NetExplorer allows to visualize and explore complex systems. It is based on d3js library that brings 1) Graphical user interface; 2) Circular, linear, multilayer and force Layout; 3) Network live exploration and 4) SVG exportation.
This package provides functions for working with (grouped) multivariate normal variance mixture distributions (evaluation of distribution functions and densities, random number generation and parameter estimation), including Student's t distribution for non-integer degrees-of-freedom as well as the grouped t distribution and copula with multiple degrees-of-freedom parameters. See <doi:10.18637/jss.v102.i02> for a high-level description of select functionality.
Apply neutrosophic regression type estimator and performs neutrosophic interval analysis including metric calculations for survey data.
This package provides a fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.
Extends package nat (NeuroAnatomy Toolbox) by providing objects and functions for handling template brains.
This package provides utility functions and objects for Extreme Value Analysis. These include probability functions with their exact derivatives w.r.t. the parameters that can be used for estimation and inference, even with censored observations. The transformations exchanging the two parameterizations of Peaks Over Threshold (POT) models: Poisson-GP and Point-Process are also provided with their derivatives.
Do algebraic operations on neural networks. We seek here to implement in R, operations on neural networks and their resulting approximations. Our operations derive their descriptions mainly from Rafi S., Padgett, J.L., and Nakarmi, U. (2024), "Towards an Algebraic Framework For Approximating Functions Using Neural Network Polynomials", <doi:10.48550/arXiv.2402.01058>, Grohs P., Hornung, F., Jentzen, A. et al. (2023), "Space-time error estimates for deep neural network approximations for differential equations", <doi:10.1007/s10444-022-09970-2>, Jentzen A., Kuckuck B., von Wurstemberger, P. (2023), "Mathematical Introduction to Deep Learning Methods, Implementations, and Theory" <doi:10.48550/arXiv.2310.20360>. Our implementation is meant mainly as a pedagogical tool, and proof of concept. Faster implementations with deeper vectorizations may be made in future versions.
Nested loop cross validation for classification purposes for misclassification error rate estimation. The package supports several methodologies for feature selection: random forest, Student t-test, limma, and provides an interface to the following classification methods in the MLInterfaces package: linear, quadratic discriminant analyses, random forest, bagging, prediction analysis for microarray, generalized linear model, support vector machine (svm and ksvm). Visualizations to assess the quality of the classifier are included: plot of the ranks of the features, scores plot for a specific classification algorithm and number of features, misclassification rate for the different number of features and classification algorithms tested and ROC plot. For further details about the methodology, please check: Markus Ruschhaupt, Wolfgang Huber, Annemarie Poustka, and Ulrich Mansmann (2004) <doi:10.2202/1544-6115.1078>.
This package implements a nonparametric statistical test for rank or score data from partially-balanced incomplete block-design experiments.
This package provides a collection of common univariate bounded probability distributions transformed to the unbounded real line, for the purpose of increased MCMC efficiency.
Interface to the Nomis database (<https://www.nomisweb.co.uk>), a comprehensive resource of United Kingdom labour market statistics provided by the Office for National Statistics (ONS). Facilitates programmatic access to census data, labour force surveys, benefit statistics, and socioeconomic indicators through a modern HTTP client with intelligent caching, automatic query pagination, and tidy data principles. Includes spatial data integration, interactive helpers, and visualization utilities. Independent implementation unaffiliated with ONS or Durham University.
Library to plot performance profiles (Dolan and More (2002) <doi:10.1007/s101070100263>) and nested performance profiles (Hekmati and Mirhajianmoghadam (2019) <doi:10.19139/soic-2310-5070-679>) for a given data frame.
Format numbers and plots for publication; includes the removal of leading zeros, standardization of number of digits, addition of affixes, and a p-value formatter. These tools combine the functionality of several base functions such as paste()', format()', and sprintf() into specific use case functions that are named in a way that is consistent with usage, making their names easy to remember and easy to deploy.
Body Shape and related measurements from the US National Health and Nutrition Examination Survey (NHANES, 1999-2004). See http://www.cdc.gov/nchs/nhanes.htm for details.
This package provides utility functions and custom probability distribution for Bayesian analyses of radiocarbon dates within the nimble modelling framework. It includes various population growth models, nimbleFunction objects, as well as a suite of functions for prior and posterior predictive checks for demographic inference (Crema and Shoda (2021) <doi:10.1371/journal.pone.0251695>) and other analyses.
Calculates phenological cycle and anomalies using a non-parametric approach applied to time series of vegetation indices derived from remote sensing data or field measurements. The package implements basic and high-level functions for manipulating vector data (numerical series) and raster data (satellite derived products). Processing of very large raster files is supported. For more information, please check the following paper: Chávez et al. (2023) <doi:10.3390/rs15010073>.
Converts numeric vectors to character vectors of English number names. Provides conversion to cardinals, ordinals, numerators, and denominators. Supports negative and non-integer numbers.
Th-U-Pb electron microprobe age dating of monazite, as originally described in <doi:10.1016/0009-2541(96)00024-1>.
Utilities for unambiguous, neat and legible representation of data (date, time stamp, numbers, percentages and strings) for presentation of analysis , aiming for elegance and consistency. The purpose of this package is to format data, that is better for presentation and any automation jobs that reports numbers.
This package provides a variety of Network Scale-up Models for researchers to analyze Aggregated Relational Data, through the use of Stan and glmmTMB'. Also provides tools for model checking In this version, the package implements models from Laga, I., Bao, L., and Niu, X (2023) <doi:10.1080/01621459.2023.2165929>, Zheng, T., Salganik, M. J., and Gelman, A. (2006) <doi:10.1198/016214505000001168>, Killworth, P. D., Johnsen, E. C., McCarty, C., Shelley, G. A., and Bernard, H. R. (1998) <doi:10.1016/S0378-8733(96)00305-X>, and Killworth, P. D., McCarty, C., Bernard, H. R., Shelley, G. A., and Johnsen, E. C. (1998) <doi:10.1177/0193841X9802200205>.
Designed to automate the calculation of Emergency Medical Service (EMS) quality metrics, nemsqar implements measures defined by the National EMS Quality Alliance (NEMSQA). By providing reliable, evidence-based quality assessments, the package supports EMS agencies, healthcare providers, and researchers in evaluating and improving patient outcomes. Users can find details on all approved NEMSQA measures at <https://www.nemsqa.org/measures>. Full technical specifications, including documentation and pseudocode used to develop nemsqar', are available on the NEMSQA website after creating a user profile at <https://www.nemsqa.org>.