Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of network integration approaches comprising unweighted and weighted integration methods. Unweighted integration is performed considering the average, per-edge average, maximum and minimum of networks edges. Weighted integration takes into account a weight for each network during the fusion process, where the weights express the predictiveness strength of each network considering a specific predictive task. Weights can be learned using a machine learning algorithm able to associate the weights to the assessment of the accuracy of the learning algorithm trained on the network itself. The implemented methods can be applied to effectively integrate different biological networks modelling a wide range of problems in bioinformatics (e.g. disease gene prioritization, protein function prediction, drug repurposing, clinical outcome prediction).
Extends the classical Newman studentized range statistic in various ways that can be applied to genome-scale transcriptomic or other expression data.
This package provides methods and tools for forecasting univariate time series using the NARFIMA (Neural AutoRegressive Fractionally Integrated Moving Average) model. It combines neural networks with fractional differencing to capture both nonlinear patterns and long-term dependencies. The NARFIMA model supports seasonal adjustment, Box-Cox transformations, optional exogenous variables, and the computation of prediction intervals. In addition to the NARFIMA model, this package provides alternative forecasting models including NARIMA (Neural ARIMA), NBSTS (Neural Bayesian Structural Time Series), and NNaive (Neural Naive) for performance comparison across different modeling approaches. The methods are based on algorithms introduced by Chakraborty et al. (2025) <doi:10.48550/arXiv.2509.06697>.
This package provides a collection of utilities referred to Exponential Power distribution, also known as General Error Distribution (see Mineo, A.M. and Ruggieri, M. (2005), A software Tool for the Exponential Power Distribution: The normalp package. In Journal of Statistical Software, Vol. 12, Issue 4).
The field of immunology benefits from software that can predict which peptide sequences trigger an immune response. NetMHCIIpan is a such a tool: it predicts the binding strength of a short peptide to a Major Histocompatibility Complex class II (MHC-II) molecule. NetMHCIIpan can be used from a web server at <https://services.healthtech.dtu.dk/services/NetMHCIIpan-3.2/> or from the command-line, using a local installation. This package allows to call NetMHCIIpan from R.
This package provides a set of functions providing several outlier (i.e., studies with extreme findings) and influential detection measures and methodologies in network meta-analysis : - simple outlier and influential detection measures - outlier and influential detection measures by considering study deletion (shift the mean) - plots for outlier and influential detection measures - Q-Q plot for network meta-analysis - Forward Search algorithm in network meta-analysis. - forward plots to monitor statistics in each step of the forward search algorithm - forward plots for summary estimates and their confidence intervals in each step of forward search algorithm.
K-nearest neighbor search for projected and non-projected sf spatial layers. Nearest neighbor search uses (1) C code from GeographicLib for lon-lat point layers, (2) function knn() from package nabor for projected point layers, or (3) function st_distance() from package sf for line or polygon layers. The package also includes several other utility functions for spatial analysis.
This package performs analysis of one-way multivariate data, for small samples using Nonparametric techniques. Using approximations for ANOVA Type, Wilks Lambda, Lawley Hotelling, and Bartlett Nanda Pillai Test statics, the package compares the multivariate distributions for a single explanatory variable. The comparison is also performed using a permutation test for each of the four test statistics. The package also performs an all-subsets algorithm regarding variables and regarding factor levels.
Estimates of coefficients of lasso penalized linear regression and generalized linear models subject to non-negativity constraints on the parameters using multiplicative iterative algorithm. Entire regularization path for a sequence of lambda values can be obtained. Functions are available for creating plots of regularization path, cross validation and estimating coefficients at a given lambda value. There is also provision for obtaining standard error of coefficient estimates.
This permutation based hypothesis test, suited for several types of data supported by the estimateNetwork function of the bootnet package (Epskamp & Fried, 2018), assesses the difference between two networks based on several invariance measures (network structure invariance, global strength invariance, edge invariance, several centrality measures, etc.). Network structures are estimated with l1-regularization. The Network Comparison Test is suited for comparison of independent (e.g., two different groups) and dependent samples (e.g., one group that is measured twice). See van Borkulo et al. (2021), available from <doi:10.1037/met0000476>.
Interface to the open location server API of Publieke Diensten Op de Kaart (<http://www.pdok.nl>). It offers geocoding, address suggestions and lookup of geographical objects. Included is an utility function for displaying leaflet tiles restricted to the Netherlands.
Posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for single-nucleotide polymorphism (SNP) data using the normal-gamma prior. Alenazi A.A., Cox A., Juarez M,. Lin W-Y. and Walters, K. (2019) Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies, Genetic Epidemiology. <doi:10.1002/gepi.22213>.
Neural Additive Model framework based on Generalized Additive Models from Hastie & Tibshirani (1990, ISBN:9780412343902), which trains a different neural network to estimate the contribution of each feature to the response variable. The networks are trained independently leveraging the local scoring and backfitting algorithms to ensure that the Generalized Additive Model converges and it is additive. The resultant Neural Network is a highly accurate and interpretable deep learning model, which can be used for high-risk AI practices where decision-making should be based on accountable and interpretable algorithms.
Estimate the non-linear odds ratio and plot it against a continuous exposure.
This package provides functions and datasets to support the book by Galecki and Burzykowski (2013), Linear Mixed-Effects Models: A Step-by-Step Approach', Springer. Includes functions for power calculations, log-likelihood contributions, and data simulation for linear mixed-effects models.
This package provides functions and examples for histogram, kernel (classical, variable bandwidth and transformations based), discrete and semiparametric hazard rate estimators.
Due to Rstudio's status as open source software, we believe it will be utilized frequently for future data analysis by users whom lack formal training or experience with R'. The NMVANOVA (Novice Model Variation ANOVA) a streamlined variation of experimental design functions that allows novice Rstudio users to perform different model variations one-way analysis of variance without downloading multiple libraries or packages. Users can easily manipulate the data block, and needed inputs so that users only have to plugin the four designed variables/values.
This package provides residuals and overdispersion metrics to assess the fit of N-mixture models obtained using the package unmarked'. Details on the methods are given in Knape et al. (2017) <doi:10.1101/194340>.
An adaptation of Non-dominated Sorting Genetic Algorithm III for multi objective feature selection tasks. Non-dominated Sorting Genetic Algorithm III is a genetic algorithm that solves multiple optimization problems simultaneously by applying a non-dominated sorting technique. It uses a reference points based selection operator to explore solution space and preserve diversity. See the original paper by K. Deb and H. Jain (2014) <DOI:10.1109/TEVC.2013.2281534> for a detailed description.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
This package implements univariate continuous probability distributions and associated model diagnostics based on the Lindley, Logistic, Half-Cauchy, Half-Logistic, and Poisson families. Provides functions for probability density, cumulative distribution, quantile, and hazard evaluation, random variate generation, and diagnostic procedures including Q-Q and P-P plots, goodness-of-fit tests, and model selection criteria.
This package provides a toolkit for medical records data analysis. The naryn package implements an efficient data structure for storing medical records, and provides a set of functions for data extraction, manipulation and analysis.
Estimate nonlinear vector autoregression models (also known as the next generation reservoir computing) for nonlinear dynamic systems. The algorithm was described by Gauthier et al. (2021) <doi:10.1038/s41467-021-25801-2>.
We developed an inference tool based on approximate Bayesian computation to decipher network data and assess the strength of the inferred links between network's actors. It is a new multi-level approximate Bayesian computation (ABC) approach. At the first level, the method captures the global properties of the network, such as a scale-free structure and clustering coefficients, whereas the second level is targeted to capture local properties, including the probability of each couple of genes being linked. Up to now, Approximate Bayesian Computation (ABC) algorithms have been scarcely used in that setting and, due to the computational overhead, their application was limited to a small number of genes. On the contrary, our algorithm was made to cope with that issue and has low computational cost. It can be used, for instance, for elucidating gene regulatory network, which is an important step towards understanding the normal cell physiology and complex pathological phenotype. Reverse-engineering consists in using gene expressions over time or over different experimental conditions to discover the structure of the gene network in a targeted cellular process. The fact that gene expression data are usually noisy, highly correlated, and have high dimensionality explains the need for specific statistical methods to reverse engineer the underlying network.