This package implements adaptive tau leaping to approximate the trajectory of a continuous-time stochastic process as described by Cao et al. (2007) The Journal of Chemical Physics <doi:10.1063/1.2745299> (aka. the Gillespie stochastic simulation algorithm). This package is based upon work supported by NSF DBI-0906041 and NIH K99-GM104158 to Philip Johnson and NIH R01-AI049334 to Rustom Antia.
Create and integrate maps in your R workflow. This package helps to design cartographic representations such as proportional symbols, choropleth, typology, flows or discontinuities maps. It also offers several features that improve the graphic presentation of maps, for instance, map palettes, layout elements (scale, north arrow, title...), labels or legends. See Giraud and Lambert (2017) <doi:10.1007/978-3-319-57336-6_13>.
Randomization-Based Inference for customized experiments. Computes Fisher-Exact P-Values alongside null randomization distributions. Retrieves counternull sets and generates counternull distributions. Computes Fisher Intervals and Fisher-Adjusted P-Values. Package includes visualization of randomization distributions and Fisher Intervals. Users can input custom test statistics and their own methods for randomization. Rosenthal and Rubin (1994) <doi:10.1111/j.1467-9280.1994.tb00281.x>.
Builds the coincident profile proposed by Martinez, W and Nieto, Fabio H and Poncela, P (2016) <doi:10.1016/j.spl.2015.11.008>. This methodology studies the relationship between a couple of time series based on the the set of turning points of each time series. The coincident profile establishes if two time series are coincident, or one of them leads the second.
This package implements event extraction and early classification of events in data streams in R. It has the functionality to generate 2-dimensional data streams with events belonging to 2 classes. These events can be extracted and features computed. The event features extracted from incomplete-events can be classified using a partial-observations-classifier (Kandanaarachchi et al. 2018) <doi:10.1371/journal.pone.0236331>.
Several functions to compute indicators for organization and efficiency in visual foraging, multi-target visual search, and cancellation tasks. The current version of this package includes the following indicators: best-r, mean Inter-target Distance, Percentage Above Optimal (PAO) scan path, and intersections in the scan path. For more detailed descriptions, see Mark et al. (2004) <doi:10.1212/01.WNL.0000131947.08670.D4>.
Using the DNA sequence and gene annotation files provided in ENSEMBL <https://www.ensembl.org/index.html>, the functions implemented in the package try to find the DNA sequences and protein sequences of any given genomic loci, and to find the genomic coordinates and protein sequences of any given protein locations, which are the frequent tasks in the analysis of genomic and proteomic data.
An elegant tool for processing and visualizing lipidomics data generated by mass spectrometry. LipidomicsR
simplifies channel and replicate handling while providing thorough lipid species annotation. Its visualization capabilities encompass principal components analysis plots, heatmaps, volcano plots, and radar plots, enabling concise data summarization and quality assessment. Additionally, it can generate bar plots and line plots to visualize the abundance of each lipid species.
Datasets for nlmixr2 and rxode2'. nlmixr2 is used for fitting and comparing nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
Create regular pivot tables with just a few lines of R. More complex pivot tables can also be created, e.g. pivot tables with irregular layouts, multiple calculations and/or derived calculations based on multiple data frames. Pivot tables are constructed using R only and can be written to a range of output formats (plain text, HTML', Latex and Excel'), including with styling/formatting.
Considering the singly imputed synthetic data generated via plug-in sampling under the multivariate normal model, draws inference procedures including the generalized variance, the sphericity test, the test for independence between two subsets of variables, and the test for the regression of one set of variables on the other. For more details see Klein et al. (2021) <doi:10.1007/s13571-019-00215-9>.
This package performs estimation and testing of the treatment effect in a 2-group randomized clinical trial with a quantitative, dichotomous, or right-censored time-to-event endpoint. The method improves efficiency by leveraging baseline predictors of the endpoint. The inverse probability weighting technique of Robins, Rotnitzky, and Zhao (JASA, 1994) is used to provide unbiased estimation when the endpoint is missing at random.
This package provides ggplot2 extensions to construct glyph-maps for visualizing seasonality in spatiotemporal data. See the Journal of Statistical Software reference: Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2024) <doi:10.18637/jss.v110.i07>. The manuscript for this package is currently under preparation and can be found on GitHub
at <https://github.com/maliny12/paper-sugarglider>.
Gene Expression Omnibus(GEO) and The Cancer Genome Atlas (TCGA) provide us with a wealth of data, such as RNA-seq, DNA Methylation, SNP and Copy number variation data. It's easy to download data from TCGA using the gdc tool, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data.
ZToolkit (Ztk) is a cross-platform GUI toolkit heavily inspired by GTK. It handles events and low level drawing on behalf of the user and provides a high-level API for managing the UI and custom widgets. ZToolkit is written in C and was created to be used for building audio plugin UIs, where the dependencies often need to be kept to a minimum.
This package provides a unified parallelization framework for multiple backends. This package is designed for internal package and interactive usage. The main operation is parallel mapping over lists. It supports local, multicore, mpi and BatchJobs mode. It allows tagging of the parallel operation with a level name that can be later selected by the user to switch on parallel execution for exactly this operation.
This package provides methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
Empirical Bayes methods for learning prior distributions from data. An unknown prior distribution (g) has yielded (unobservable) parameters, each of which produces a data point from a parametric exponential family (f). The goal is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical Bayes methods. Details and examples are in the paper by Narasimhan and Efron (2020, <doi:10.18637/jss.v094.i11>).
Software for performing the reduction, exploratory and model selection phases of the procedure proposed by Cox, D.R. and Battey, H.S. (2017) <doi:10.1073/pnas.1703764114> for sparse regression when the number of potential explanatory variables far exceeds the sample size. The software supports linear regression, likelihood-based fitting of generalized linear regression models and the proportional hazards model fitted by partial likelihood.
Classical Ising Model is a land mark system in statistical physics.The model explains the physics of spin glasses and magnetic materials, and cooperative phenomenon in general, for example phase transitions and neural networks.This package provides utilities to simulate one dimensional Ising Model with Metropolis and Glauber Monte Carlo with single flip dynamics in periodic boundary conditions. Utility functions for exact solutions are provided.
R Client for the Microsoft Cognitive Services Web Language Model REST API, including Break Into Words, Calculate Conditional Probability, Calculate Joint Probability, Generate Next Words, and List Available Models. A valid account MUST be registered at the Microsoft Cognitive Services website <https://www.microsoft.com/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for ggplot2 plotting methods for nlmixr2 objects.
Set of functions designed to help in the analysis of TDP sensors. Features includes dates and time conversion, weather data interpolation, daily maximum of tension analysis and calculations required to convert sap flow density data to sap flow rates at the tree and plot scale (For more information see : Granier (1985) <DOI:10.1051/forest:19850204> & Granier (1987) <DOI:10.1093/treephys/3.4.309>).
Tests the hypothesis that variances are homogeneous or not using bootstrap. The procedure uses a variance-based statistic, and is derived from a normal-theory test. The test equivalently expressed the hypothesis as a function of the log contrasts of the population variances. A box-type acceptance region is constructed to test the hypothesis. See Cahoy (2010) \doi10.1016/j.csda.2010.04.012.