This package provides the Empirical Bayesian Elastic Net for handling multicollinearity in generalized linear regression models. As a special case of the EBglmnet package (also available on CRAN), this package encourages a grouping effects to select relevant variables and estimate the corresponding non-zero effects.
Given exposure and survival time series as well as parameter values, GUTS allows for the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood (see Albert, C., Vogel, S. and Ashauer, R. (2016) <doi:10.1371/journal.pcbi.1004978>).
Generates experiments - simulating structured or experimental data as: completely randomized design, randomized block design, latin square design, factorial and split-plot experiments (Ferreira, 2008, ISBN:8587692526; Naes et al., 2007 <doi:10.1002/qre.841>; Rencher et al., 2007, ISBN:9780471754985; Montgomery, 2001, ISBN:0471316490).
Set of R functions to be coupled with the xeus-r jupyter kernel in order to drive execution of code in notebook input cells, how R objects are to be displayed in output cells, and handle two way communication with the front end through comms.
Streamflow (and climate) reconstruction using Linear Dynamical Systems. The advantage of this method is the additional state trajectory which can reveal more information about the catchment or climate system. For details of the method please refer to Nguyen and Galelli (2018) <doi:10.1002/2017WR022114>.
Generation of response patterns under dichotomous and polytomous computerized multistage testing (MST) framework. It holds various item response theory (IRT) and score-based methods to select the next module and estimate ability levels (Magis, Yan and von Davier (2017, ISBN:978-3-319-69218-0)).
Run multiple Large Language Model predictions against a table. The predictions run row-wise over a specified column. It works using a one-shot prompt, along with the current row's content. The prompt that is used will depend of the type of analysis needed.
Simulating and estimating (regime-switching) Markov chain Gaussian fields with covariance functions of the Gneiting class (Gneiting 2002) <doi:10.1198/016214502760047113>. It supports parameter estimation by weighted least squares and maximum likelihood methods, and produces Kriging forecasts and intervals for existing and new locations.
Compute the multiple Grubbs-Beck low-outlier test on positively distributed data and utilities for noninterpretive U.S. Geological Survey annual peak-streamflow data processing discussed in Cohn et al. (2013) <doi:10.1002/wrcr.20392> and England et al. (2017) <doi:10.3133/tm4B5>.
Calibrate p-values under a robust perspective using the methods developed by Sellke, Bayarri, and Berger (2001) <doi:10.1198/000313001300339950> and obtain measures of the evidence provided by the data in favor of point null hypotheses which are safer and more straightforward to interpret.
This package implements the Bayesian quantile regression model for binary longitudinal data (QBLD) developed in Rahman and Vossmeyer (2019) <DOI:10.1108/S0731-90532019000040B009>. The model handles both fixed and random effects and implements both a blocked and an unblocked Gibbs sampler for posterior inference.
This package provides functions for fitting semiparametric regression models for panel count survival data. An overview of the package can be found in Wang and Yan (2011) <doi:10.1016/j.cmpb.2010.10.005> and Chiou et al. (2018) <doi:10.1111/insr.12271>.
Make graphical representations of single case data and transform graphical displays back to raw data, as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>. The package also includes tools for visually analyzing single-case data, by displaying central location, variability and trend.
This package provides methods for computing joint tests, controlling the Familywise Error Rate (FWER) and getting lower bounds on the number of false hypotheses in a set. The methods implemented here are described in Mogensen and Markussen (2021) <doi:10.48550/arXiv.2108.04731>
.
Framework provides functions to parse Training Center XML (TCX) files and extract key activity metrics such as total distance, total time, calories burned, maximum altitude, and power values (watts). This package is useful for analyzing workout and training data from devices that export TCX format.
An interface between R and the Valhalla API. Valhalla is a routing service based on OpenStreetMap
data. See <https://valhalla.github.io/valhalla/> for more information. This package enables the computation of routes, trips, isochrones and travel distances matrices (travel time and kilometer distance).
This package provides tools for accessing the Botanical Information and Ecology Network (BIEN) database. The BIEN database contains cleaned and standardized botanical data including occurrence, trait, plot and taxonomic data. This package provides functions that query the BIEN database by constructing and executing optimized SQL queries.
The aim of httr is to provide a wrapper for RCurl customised to the demands of modern web APIs. It provides useful tools for working with HTTP organised by HTTP verbs (GET()
, POST()
, etc). Configuration functions make it easy to control additional request components.
This package provides functions for a classification method based on receiver operating characteristics (ROC). Briefly, features are selected according to their ranked AUC value in the training set. The selected features are merged by the mean value to form a meta-gene. The samples are ranked by their meta-gene value and the meta-gene threshold that has the highest accuracy in splitting the training samples is determined. A new sample is classified by its meta-gene value relative to the threshold. In the first place, the package is aimed at two class problems in gene expression data, but might also apply to other problems.
(guix-science-nonfree packages bioconductor)
This package implements the Signaling Pathway Impact Analysis (SPIA) which uses the information form a list of differentially expressed genes and their log fold changes together with signaling pathways topology, in order to identify the pathways most relevant to the condition under the study.
Accompanies the book "Designing experiments and analyzing data: A model comparison perspective" (3rd ed.) by Maxwell, Delaney, & Kelley (2018; Routledge). Contains all of the data sets in the book's chapters and end-of-chapter exercises. Information about the book is available at <https://designingexperiments.com/>.
Resurrects the standard plot for shapes established by the base and graphics packages. This is suited to workflows that require plotting using the established and traditional idioms of plotting spatially coincident data where it belongs. This package depends on sf and only replaces the plot method.
Bayesian variable selection methods for analyzing the structure of a Markov Random Field model for a network of binary and/or ordinal variables. Details of the implemented methods can be found in: Marsman, van den Bergh, and Haslbeck (in press) <doi:10.31234/osf.io/ukwrf>.
This package provides a covariate-augmented overdispersed Poisson factor model is proposed to jointly perform a high-dimensional Poisson factor analysis and estimate a large coefficient matrix for overdispersed count data. More details can be referred to Liu et al. (2024) <doi:10.1093/biomtc/ujae031>.