Short and understandable commands that generate tabulated, formatted, and rounded survey estimates. Mostly a wrapper for the survey package (Lumley (2004) <doi:10.18637/jss.v009.i08> <https://CRAN.R-project.org/package=survey>) that identifies low-precision estimates using the National Center for Health Statistics (NCHS) presentation standards (Parker et al. (2017) <https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf>, Parker et al. (2023) <doi:10.15620/cdc:124368>).
In a scatterplot where the response variable is Gaussian, Poisson or binomial, we consider the case in which the mean function is smooth with a change-point, which is a mode, an inflection point or a jump point. The main routine estimates the mean curve and the change-point as well using shape-restricted B-splines. An optional subroutine delivering a bootstrap confidence interval for the change-point is incorporated in the main routine.
This package contains the experimental data and a complete executable transcript (vignette) of the statistical analysis presented in the paper "Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages" by Y. Ohnishi, W. Huber, A. Tsumura, M. Kang, P. Xenopoulos, K. Kurimoto, A. K. Oles, M. J. Arauzo-Bravo, M. Saitou, A.-K. Hadjantonakis and T. Hiiragi; Nature Cell Biology (2014) 16(1): 27-37. doi: 10.1038/ncb2881.".
This package provides a set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a log
or a logit
transformation, respectively.
Tests for two high-dimensional population mean vectors. The user has the option to compute the asymptotic, the permutation or the bootstrap based p-value of the test. Some references are: Chen S.X. and Qin Y.L. (2010). <doi:10.1214/09-AOS716>, Cai T.T., Liu W., and Xia Y. (2014) <doi:10.1111/rssb.12034> and Yu X., Li D., Xue L. and Li, R. (2023) <doi:10.1080/01621459.2022.2061354>.
Several functions are provided to implement a MBPLSDA : components search, optimal model components number search, optimal model validity test by permutation tests, observed values evaluation of optimal model parameters and predicted categories, bootstrap values evaluation of optimal model parameters and predicted cross-validated categories. The use of this package is described in Brandolini-Bunlon et al (2019. Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data. Metabolomics, 15(10):134).
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).
InterCellar
is implemented as an R/Bioconductor Package containing a Shiny app that allows users to interactively analyze cell-cell communication from scRNA-seq
data. Starting from precomputed ligand-receptor interactions, InterCellar
provides filtering options, annotations and multiple visualizations to explore clusters, genes and functions. Finally, based on functional annotation from Gene Ontology and pathway databases, InterCellar
implements data-driven analyses to investigate cell-cell communication in one or multiple conditions.
Infer the posterior distributions of microRNA
targets by probabilistically modelling the likelihood microRNA-overexpression
fold-changes and sequence-based scores. Variaitonal Bayesian Gaussian mixture model (VB-GMM) is applied to log fold-changes and sequence scores to obtain the posteriors of latent variable being the miRNA
targets. The final targetScore
is computed as the sigmoid-transformed fold-change weighted by the averaged posteriors of target components over all of the features.
This crate contains the core API to access Pijul repositories.
The key object is a Repository
, on which Txn
(immutable transactions) and MutTxn
(mutable transactions) can be started, to perform a variety of operations.
Another important object is a Patch
, which encodes two different pieces of information:
Information about deleted and inserted lines between two versions of a file.
Information about file moves, additions and deletions.
This package provides methods to deal with the free antiassociative algebra over the reals with an arbitrary number of indeterminates. Antiassociativity means that (xy)z = -x(yz). Antiassociative algebras are nilpotent with nilindex four (Remm, 2022, <doi:10.48550/arXiv.2202.10812>
) and this drives the design and philosophy of the package. Methods are defined to create and manipulate arbitrary elements of the antiassociative algebra, and to extract and replace coefficients. A vignette is provided.
This package provides more than 550 data sets of actual election results. Each of the data sets includes aggregate party and candidate outcomes at the voting unit (polling stations) level and two-way cross-tabulated results at the district level. These data sets can be used to assess ecological inference algorithms devised for estimating RxC
(global) ecological contingency tables using exclusively aggregate results from voting units. Reference: Pavà a (2022) <doi:10.1177/08944393211040808>.
The HBV hydrological model (Bergström, S. and Lindström, G., (2015) <doi:10.1002/hyp.10510>) has been split in modules to allow the user to build his/her own model. This version was developed by the author in IANIGLA-CONICET (Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales - Consejo Nacional de Investigaciones Cientificas y Tecnicas) for hydroclimatic studies in the Andes. HBV.IANIGLA incorporates routines for clean and debris covered glacier melt simulations.
This package provides a comprehensive tool for almost all existing multiple testing methods for discrete data. The package also provides some novel multiple testing procedures controlling FWER/FDR for discrete data. Given discrete p-values and their domains, the [method].p.adjust function returns adjusted p-values, which can be used to compare with the nominal significant level alpha and make decisions. For users convenience, the functions also provide the output option for printing decision rules.
This package provides intuitive functions for caching R objects, encouraging reproducible, restartable, and distributed R analysis. The user selects a location to store caches, and then provides nothing more than a cache name and instructions (R code) for how to produce the R object. Also provides some advanced options like environment assignments, recreating or reloading caches, and cluster compute bindings (using the batchtools package) making it flexible enough for use in large-scale data analysis projects.
Offers a solution for the unavailability of raw data in most anthropological studies by facilitating the calculations of several sexual dimorphism related analyses using the published summary statistics of metric data (mean, standard deviation and sex specific sample size) as illustrated by the works of Relethford, J. H., & Hodges, D. C. (1985) <doi:10.1002/ajpa.1330660105>, Greene, D. L. (1989) <doi:10.1002/ajpa.1330790113> and Konigsberg, L. W. (1991) <doi:10.1002/ajpa.1330840110>.
The imcdatasets package provides access to publicly available IMC datasets. IMC is a technology that enables measurement of > 40 proteins from tissue sections. The generated images can be segmented to extract single cell data. Datasets typically consist of three elements: a SingleCellExperiment
object containing single cell data, a CytoImageList
object containing multichannel images and a CytoImageList
object containing the cell masks that were used to extract the single cell data from the images.
Statistics implemented for both peak-wise and gene-wise associations. In peak-wise associations, the p-value of the target genes of a given set of peaks are calculated. Negative binomial or Poisson distributions can be used for modeling the unweighted peaks targets and log-nromal can be used to model the weighted peaks. In gene-wise associations a table consisting of a set of genes, mapped to specific peaks, is generated using the given rules.
This package computes optimized distance and similarity measures for comparing probability functions (Drost (2018) <doi:10.21105/joss.00765>). These comparisons between probability functions have their foundations in a broad range of scientific disciplines from mathematics to ecology. The aim of this package is to provide a core framework for clustering, classification, statistical inference, goodness-of-fit, non-parametric statistics, information theory, and machine learning tasks that are based on comparing univariate or multivariate probability functions.
This package implements fast hierarchical, agglomerative clustering routines. Part of the functionality is designed as drop-in replacement for existing routines: linkage()
in the SciPy package scipy.cluster.hierarchy
, hclust()
in R's stats
package, and the flashClust
package. It provides the same functionality with the benefit of a much faster implementation. Moreover, there are memory-saving routines for clustering of vector data, which go beyond what the existing packages provide.
An interface to Azure Computer Vision <https://docs.microsoft.com/azure/cognitive-services/Computer-vision/Home> and Azure Custom Vision <https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home>, building on the low-level functionality provided by the AzureCognitive
package. These services allow users to leverage the cloud to carry out visual recognition tasks using advanced image processing models, without needing powerful hardware of their own. Part of the AzureR
family of packages.
This package provides a set of user-friendly functions designed to fill gaps in existing introductory biostatistics R tools, making it easier for newcomers to perform basic biostatistical analyses without needing advanced programming skills. The methods implemented in this package are based on the works: Connor (1987) <doi:10.2307/2531961> Fleiss, Levin, & Paik (2013, ISBN:978-1-118-62561-3) Levin & Chen (1999) <doi:10.1080/00031305.1999.10474431> McNemar
(1947) <doi:10.1007/BF02295996>.
Choropleths are thematic maps where geographic regions, such as states, are colored according to some metric, such as the number of people who live in that state. This package simplifies this process by 1. Providing ready-made functions for creating choropleths of common maps. 2. Providing data and API connections to interesting data sources for making choropleths. 3. Providing a framework for creating choropleths from arbitrary shapefiles. 4. Overlaying those maps over reference maps from Google Maps'.
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), and test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>).