Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles. The package provides flags to fit a variety of model-based phase I design, including 1 stage models with or without individualized dose modification, 3-stage models with or without individualized dose modification, etc. Functions are provided to recommend dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters. Yin, Jun, et al. (2017) <doi:10.1002/sim.7134>.
This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the gurobi installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, CPLEX optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the rcbc R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.
This package provides a function to convert PRQL strings to SQL strings. Combined with other R functions that take SQL as an argument, PRQL can be used on R.
This package contains the core methods for the evaluation of principal surrogates in a single clinical trial. Provides a flexible interface for defining models for the risk given treatment and the surrogate, the models for integration over the missing counterfactual surrogate responses, and the estimation methods. Estimated maximum likelihood and pseudo-score can be used for estimation, and the bootstrap for inference. A variety of post-estimation summary methods are provided, including print, summary, plot, and testing.
This package provides a user-friendly interface for creating and managing empirical crowd-sourcing studies via API access to <https://www.prolific.co>.
This package provides functions to automatically build a directory structure for a new R project. Using this structure, ProjectTemplate automates data loading, preprocessing, library importing and unit testing.
Kernel density estimation with global bandwidth selection via "plug-in".
Distributes data from the Polarization in Comparative Attitudes Project. Helper functions enable data retrieval in wide and tidy formats for user-defined countries and years. Provides support for case-insensitive country names in many languages. Mehlhaff (2022) <https://imehlhaff.net/files/Polarization%20and%20Democracy.pdf>.
This package provides a function kitten() which creates cute little packages which pass R package checks. This sets it apart from package.skeleton() which it calls, and which leaves imperfect files behind. As this is not exactly helpful for beginners, kitten() offers an alternative. Unit test support can be added via the tinytest package (if present), and documentation-creation support can be added via roxygen2 (if present).
Facilitates the performance of several analyses, including simple and sequential path coefficient analysis, correlation estimate, drawing correlogram, Heatmap, and path diagram. When working with raw data, that includes one or more dependent variables along with one or more independent variables are available, the path coefficient analysis can be conducted. It allows for testing direct effects, which can be a vital indicator in path coefficient analysis. The process of preparing the dataset rule is explained in detail in the vignette file "Path.Analysis_manual.Rmd". You can find this in the folders labelled "data" and "~/inst/extdata". Also see: 1)the lavaan', 2)a sample of sequential path analysis in metan suggested by Olivoto and Lúcio (2020) <doi:10.1111/2041-210X.13384>, 3)the simple PATHSAS macro written in SAS by Cramer et al. (1999) <doi:10.1093/jhered/90.1.260>, and 4)the semPlot() function of OpenMx as initial tools for conducting path coefficient analyses and SEM (Structural Equation Modeling). To gain a comprehensive understanding of path coefficient analysis, both in theory and practice, see a Minitab macro developed by Arminian, A. in the paper by Arminian et al. (2008) <doi:10.1080/15427520802043182>.
Simulation of models Poisson-Tweedie.
This package provides a toolbox for deterministic, probabilistic and privacy-preserving record linkage techniques. Combines the functionality of the Merge ToolBox (<https://www.record-linkage.de>) with current privacy-preserving techniques.
This package provides a comprehensive and easy to use R implementation of confirmatory phylogenetic path analysis as described by Von Hardenberg and Gonzalez-Voyer (2012) <doi:10.1111/j.1558-5646.2012.01790.x>.
Fits heterogeneous panel data models with interactive effects for linear regression, logistic, count, probit, quantile, and clustering. Based on Ando, T. and Bai, J. (2015) "A simple new test for slope homogeneity in panel data models with interactive effects" <doi: 10.1016/j.econlet.2015.09.019>, Ando, T. and Bai, J. (2015) "Asset Pricing with a General Multifactor Structure" <doi: 10.1093/jjfinex/nbu026> , Ando, T. and Bai, J. (2016) "Panel data models with grouped factor structure under unknown group membership" <doi: 10.1002/jae.2467>, Ando, T. and Bai, J. (2017) "Clustering huge number of financial time series: A panel data approach with high-dimensional predictors and factor structures" <doi: 10.1080/01621459.2016.1195743>, Ando, T. and Bai, J. (2020) "Quantile co-movement in financial markets" <doi: 10.1080/01621459.2018.1543598>, Ando, T., Bai, J. and Li, K. (2021) "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity" <doi: 10.1016/j.jeconom.2020.11.013.>.
For a given graph containing vertices, edges, and a signal associated with the vertices, the PathwaySpace package performs a convolution operation, which involves a weighted combination of neighboring vertices and their associated signals. The package then uses a decay function to project these signals, creating geodesic paths on a 2D-image space. PathwaySpace could have various applications, such as visualizing network data in a graphical format that highlights the relationships and signal strengths between vertices. It can be particularly useful for understanding the influence of signals through complex networks. By combining graph theory, signal processing, and visualization, the PathwaySpace package provides a novel way of representing graph data.
An implementation of the one-step privacy-protecting method for estimating the overall and site-specific hazard ratios using inverse probability weighted Cox models in distributed data network studies, as proposed by Shu, Yoshida, Fireman, and Toh (2019) <doi: 10.1177/0962280219869742>. This method only requires sharing of summary-level riskset tables instead of individual-level data. Both the conventional inverse probability weights and the stabilized weights are implemented.
Build piecewise exponential survival model for study design (planning) and event/timeline prediction.
This package provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.
Simulation of species diversification, fossil records, and phylogenies. While the literature on species birth-death simulators is extensive, including important software like paleotree and APE', we concluded there were interesting gaps to be filled regarding possible diversification scenarios. Here we strove for flexibility over focus, implementing a large array of regimens for users to experiment with and combine. In this way, paleobuddy can be used in complement to other simulators as a flexible jack of all trades, or, in the case of scenarios implemented only here, can allow for robust and easy simulations for novel situations. Environmental data modified from that in RPANDA': Morlon H. et al (2016) <doi:10.1111/2041-210X.12526>.
Generates predicted stage change days for an insect, based on daily temperatures and development rate parameters, as developed by Pollard (2014) <http://mural.maynoothuniversity.ie/view/ethesisauthor/Pollard=3ACiaran_P=2E=3A=3A.html>. A few example datasets are included and implemented for P. vulgatissima, the blue willow beetle, but the approach can be readily applied to other species that display similar behaviour.
Perform tests for pleiotropy of multiple traits of various variable types on genotypes for a genetic marker.
This package provides function declarations and inline function definitions that facilitate cleaning strings in C++ code before passing them to R.
Fit calibrations curves for clinical prediction models and calculate several associated metrics (Eavg, E50, E90, Emax). Ideally predicted probabilities from a prediction model should align with observed probabilities. Calibration curves relate predicted probabilities (or a transformation thereof) to observed outcomes via a flexible non-linear smoothing function. pmcalibration allows users to choose between several smoothers (regression splines, generalized additive models/GAMs, lowess, loess). Both binary and time-to-event outcomes are supported. See Van Calster et al. (2016) <doi:10.1016/j.jclinepi.2015.12.005>; Austin and Steyerberg (2019) <doi:10.1002/sim.8281>; Austin et al. (2020) <doi:10.1002/sim.8570>.
Data analysis based on panel partially-observed Markov process (PanelPOMP) models. To implement such models, simulate them and fit them to panel data, panelPomp extends some of the facilities provided for time series data by the pomp package. Implemented methods include filtering (panel particle filtering) and maximum likelihood estimation (Panel Iterated Filtering) as proposed in Breto, Ionides and King (2020) "Panel Data Analysis via Mechanistic Models" <doi:10.1080/01621459.2019.1604367>.