Rcpp implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Obtain information on peak flow data from the National River Flow Archive (NRFA) in the United Kingdom, either from the Peak Flow Dataset files <https://nrfa.ceh.ac.uk/data/peak-flow-dataset> once these have been downloaded to the user's computer or using the NRFA's API. These files are in a format suitable for direct use in the WINFAP software, hence the name of the package.
Calculates the optimal price of assets (such as airline flight seats, hotel room bookings) whose value becomes zero after a fixed ``expiry date''. Assumes potential customers arrive (possibly in groups) according to a known inhomogeneous Poisson process. Also assumes a known time-varying elasticity of demand (price sensitivity) function. Uses elementary techniques based on ordinary differential equations. Uses the package deSolve
to effect the solution of these differential equations.
Colour vision models, colour spaces and colour thresholds. Provides flexibility to build user-defined colour vision models for n number of photoreceptor types. Includes Vorobyev & Osorio (1998) Receptor Noise Limited models <doi:10.1098/rspb.1998.0302>, Chittka (1992) colour hexagon <doi:10.1007/BF00199331>, and Endler & Mielke (2005) model <doi:10.1111/j.1095-8312.2005.00540.x>. Models have been extended to accept any number of photoreceptor types.
Estimation, model selection and goodness-of-fit of (1) factor copula models for mixed continuous and discrete data in Kadhem and Nikoloulopoulos (2021) <doi:10.1111/bmsp.12231>; (2) bi-factor and second-order copula models for item response data in Kadhem and Nikoloulopoulos (2023) <doi:10.1007/s11336-022-09894-2>; (3) factor tree copula models for item response data in Kadhem and Nikoloulopoulos (2022) <arXiv:2201.00339>
.
This package provides a mutation analysis tool that discovers cancer driver genes with frequent mutations in protein signalling sites such as post-translational modifications (phosphorylation, ubiquitination, etc). The Poisson generalized linear regression model identifies genes where cancer mutations in signalling sites are more frequent than expected from the sequence of the entire gene. Integration of mutations with signalling information helps find new driver genes and propose candidate mechanisms to known drivers.
Racket is a general-purpose programming language in the Scheme family, with a large set of libraries and a compiler based on Chez Scheme. Racket is also a platform for language-oriented programming, from small domain-specific languages to complete language implementations.
The ``minimal Racket'' distribution includes just enough of Racket for you to use raco pkg
to install more. Bundled packages, such as the DrRacket IDE, are not included.
Machine learning based package to predict anti-angiogenic peptides using heterogeneous sequence descriptors. AntAngioCOOL
exploits five descriptor types of a peptide of interest to do prediction including: pseudo amino acid composition, k-mer composition, k-mer composition (reduced alphabet), physico-chemical profile and atomic profile. According to the obtained results, AntAngioCOOL
reached to a satisfactory performance in anti-angiogenic peptide prediction on a benchmark non-redundant independent test dataset.
Models for detecting concreteness in natural language. This package is built in support of Yeomans (2021) <doi:10.1016/j.obhdp.2020.10.008>, which reviews linguistic models of concreteness in several domains. Here, we provide an implementation of the best-performing domain-general model (from Brysbaert et al., (2014) <doi:10.3758/s13428-013-0403-5>) as well as two pre-trained models for the feedback and plan-making domains.
Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
Implementation of the scaling functions presented in "General statistical scaling laws for stability in ecological systems" by Clark et al in Ecology Letters <DOI:10.1111/ele.13760>. Includes functions for extrapolating variability, resistance, and resilience across spatial and ecological scales, as well as a basic simulation function for producing time series, and a regression routine for generating unbiased parameter estimates. See the main text of the paper for more details.
Backends implementing the Future API <doi:10.32614/RJ-2021-048>, as defined by the future package, should use the tests provided by this package to validate that they meet the minimal requirements of the Future API. The tests can be performed easily from within R or from outside of R from the command line making it straightforward to include them in package tests and in Continuous Integration (CI) pipelines.
Calculates grey level co-occurrence matrix (GLCM) based texture measures (Hall-Beyer (2017) <https://prism.ucalgary.ca/bitstream/handle/1880/51900/texture%20tutorial%20v%203_0%20180206.pdf>; Haralick et al. (1973) <doi:10.1109/TSMC.1973.4309314>) of raster layers using a sliding rectangular window. It also includes functions to quantize a raster into grey levels as well as tabulate a glcm and calculate glcm texture metrics for a matrix.
Ke, B. S., Chiang, A. J., & Chang, Y. C. I. (2018) <doi:10.1080/10543406.2017.1377728> provide two theoretical methods (influence function and local influence) based on the area under the receiver operating characteristic curve (AUC) to quantify the numerical impact of each observation to the overall AUC. Alternative graphical tools, cumulative lift charts, are proposed to reveal the existences and approximate locations of those influential observations through data visualization.
This package provides a shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices of EHR codes from Veterans Affairs (VA) and Massachusetts General Brigham (MGB), the knowledge extraction via sparse embedding regression (KESER) algorithm was used to construct knowledge networks for the code concepts. Background and details about the method can be found at Chuan et al. (2021) <doi:10.1038/s41746-021-00519-z>.
This package provides GIS and map utilities, plus additional modeling tools for developing cellular automata, dynamic raster models, and agent based models in SpaDES
'. Included are various methods for spatial spreading, spatial agents, GIS operations, random map generation, and others. See ?SpaDES.tools
for an categorized overview of these additional tools. The suggested package NLMR can be installed from the following repository: (<https://PredictiveEcology.r-universe.dev>
).
The German national forest inventory uses angle count sampling, a sampling method first published as `Bitterlich, W.: Die Winkelzählmessung. Allgemeine Forst- und Holzwirtschaftliche Zeitung, 58. Jahrg., Folge 11/12 vom Juni 1947` and extended by Grosenbaugh (<https://academic.oup.com/jof/article-abstract/50/1/32/4684174>) as probability proportional to size sampling. When plots are located near stand boundaries, their sizes and hence their probabilities need to be corrected.
This started out as a package for file and string manipulation. Since then, the fs
and strex
packages emerged, offering functionality previously given by this package. Those packages have hence almost pushed filesstrings into extinction. However, it still has a small number of unique, handy file manipulation functions which can be seen in the vignette. One example is a function to remove spaces from all file names in a directory.
This package implements likelihood inference for early epidemic analysis. BETS is short for the four key epidemiological events being modeled: Begin of exposure, End of exposure, time of Transmission, and time of Symptom onset. The package contains a dataset of the trajectory of confirmed cases during the coronavirus disease (COVID-19) early outbreak. More detail of the statistical methods can be found in Zhao et al. (2020) <arXiv:2004.07743>
.
Read, analyze, modify, and write GAMS (General Algebraic Modeling System) data. The main focus of gamstransfer is the highly efficient transfer of data with GAMS <https://www.gams.com/>, while keeping these operations as simple as possible for the user. The transfer of data usually takes place via an intermediate GDX (GAMS Data Exchange) file. Additionally, gamstransfer provides utility functions to get an overview of GAMS data and to check its validity.
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
This package provides robust estimation for spatial error model to presence of outliers in the residuals. The classical estimation methods can be influenced by the presence of outliers in the data. We proposed a robust estimation approach based on the robustified likelihood equations for spatial error model (Vural Yildirim & Yeliz Mert Kantar (2020): Robust estimation approach for spatial error model, Journal of Statistical Computation and Simulation, <doi:10.1080/00949655.2020.1740223>).
Uplift modeling aims at predicting the causal effect of an action such as a marketing campaign on a particular individual. In order to simplify the task for practitioners in uplift modeling, we propose a combination of tools that can be separated into the following ingredients: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and, v) model validation. For more details, see <https://dms.umontreal.ca/~murua/research/UpliftRegression.pdf>
.
This package provides a tool that imports, subsets, and exports the CongressData
dataset. CongressData
contains approximately 800 variables concerning all US congressional districts with data back to 1789. The dataset tracks district characteristics, members of Congress, and the political behavior of those members. Users with only a basic understanding of R can subset this data across multiple dimensions, export their search results, identify the citations associated with their searches, and more.