Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create PX-files from scratch or read and modify existing ones. Includes a function for every PX keyword, making metadata manipulation simple and human-readable.
Estimation of univariate (conditional) densities using penalized B-splines with automatic selection of optimal smoothing parameter.
The PBIB designs are important type of incomplete block designs having wide area of their applications for example in agricultural experiments, in plant breeding, in sample surveys etc. This package constructs various series of PBIB designs and assists in checking all the necessary conditions of PBIB designs and the association scheme on which these designs are based on. It also assists in calculating the efficiencies of PBIB designs with any number of associate classes. The package also constructs Youden-m square designs which are Row-Column designs for the two-way elimination of heterogeneity. The incomplete columns of these Youden-m square designs constitute PBIB designs. With the present functionality, the package will be of immense importance for the researchers as it will help them to construct PBIB designs, to check if their PBIB designs and association scheme satisfy various necessary conditions for the existence, to calculate the efficiencies of PBIB designs based on any association scheme and to construct Youden-m square designs for the two-way elimination of heterogeneity. R. C. Bose and K. R. Nair (1939) <http://www.jstor.org/stable/40383923>.
Helps you determine the analysis window to use when analyzing densely-sampled time-series data, such as EEG data, using permutation testing (Maris & Oostenveld, 2007) <doi:10.1016/j.jneumeth.2007.03.024>. These permutation tests can help identify the timepoints where significance of an effect begins and ends, and the results can be plotted in various types of heatmap for reporting. Mixed-effects models are supported using an implementation of the approach by Lee & Braun (2012) <doi:10.1111/j.1541-0420.2011.01675.x>.
Several tests of quantitative palaeoenvironmental reconstructions from microfossil assemblages, including the null model tests of the statistically significant of reconstructions developed by Telford and Birks (2011) <doi:10.1016/j.quascirev.2011.03.002>, and tests of the effect of spatial autocorrelation on transfer function model performance using methods from Telford and Birks (2009) <doi:10.1016/j.quascirev.2008.12.020> and Trachsel and Telford (2016) <doi:10.5194/cp-12-1215-2016>. Age-depth models with generalized mixed-effect regression from Heegaard et al (2005) <doi:10.1191/0959683605hl836rr> are also included.
Recent years have seen an increased interest in novel methods for analyzing quantitative data from experimental psychology. Currently, however, they lack an established and accessible software framework. Many existing implementations provide no guidelines, consisting of small code snippets, or sets of packages. In addition, the use of existing packages often requires advanced programming experience. PredPsych is a user-friendly toolbox based on machine learning predictive algorithms. It comprises of multiple functionalities for multivariate analyses of quantitative behavioral data based on machine learning models.
The name of the package is derived from the French, pour ridge, and provides functionality for ridge-type estimation of a potpourri of models. Currently, this estimation concerns that of various Gaussian graphical models from different study designs. Among others it considers the regular Gaussian graphical model and a mixture of such models. The porridge-package implements the estimation of the former either from i) data with replicated observations by penalized loglikelihood maximization using the regular ridge penalty on the parameters (van Wieringen, Chen, 2021) or ii) from non-replicated data by means of either a ridge estimator with multiple shrinkage targets (as presented in van Wieringen et al. 2020, <doi:10.1016/j.jmva.2020.104621>) or the generalized ridge estimator that allows for both the inclusion of quantitative and qualitative prior information on the precision matrix via element-wise penalization and shrinkage (van Wieringen, 2019, <doi:10.1080/10618600.2019.1604374>). Additionally, the porridge-package facilitates the ridge penalized estimation of a mixture of Gaussian graphical models (Aflakparast et al., 2018). On another note, the package also includes functionality for ridge-type estimation of the generalized linear model (as presented in van Wieringen, Binder, 2022, <doi:10.1080/10618600.2022.2035231>).
This package provides a suite of functions that fit models that use PPM type priors for partitions. Models include hierarchical Gaussian and probit ordinal models with a (covariate dependent) PPM. If a covariate dependent product partition model is selected, then all the options detailed in Page, G.L.; Quintana, F.A. (2018) <doi:10.1007/s11222-017-9777-z> are available. If covariate values are missing, then the approach detailed in Page, G.L.; Quintana, F.A.; Mueller, P (2020) <doi:10.1080/10618600.2021.1999824> is employed. Also included in the package is a function that fits a Gaussian likelihood spatial product partition model that is detailed in Page, G.L.; Quintana, F.A. (2016) <doi:10.1214/15-BA971>, and multivariate PPM change point models that are detailed in Quinlan, J.J.; Page, G.L.; Castro, L.M. (2023) <doi:10.1214/22-BA1344>. In addition, a function that fits a univariate or bivariate functional data model that employs a PPM or a PPMx to cluster curves based on B-spline coefficients is provided.
Packages data about the victims of the Pinochet regime as compiled by the Chilean National Commission for Truth and Reconciliation Report (1991, ISBN:9780268016463).
Parametric linkage analysis of monogenic traits in medical pedigrees. Features include singlepoint analysis, multipoint analysis via MERLIN (Abecasis et al. (2002) <doi:10.1038/ng786>), visualisation of log of the odds (LOD) scores and summaries of linkage peaks. Disease models may be specified to accommodate phenocopies, reduced penetrance and liability classes. paramlink2 is part of the pedsuite package ecosystem, presented in Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
Quickly and easily generate plots of acoustic data aligned with transcriptions similar to those made in Praat using either derived signals generated directly in R with wrassp or imported derived signals from Praat'. Provides easy and fast out-of-the-box solutions but also a high extent of flexibility. Also provides options for embedding audio in figures and animating figures.
This package provides tools for both single and batch image manipulation and analysis (Olivoto, 2022 <doi:10.1111/2041-210X.13803>) and phytopathometry (Olivoto et al., 2022 <doi:10.1007/S40858-021-00487-5>). The tools can be used for the quantification of leaf area, object counting, extraction of image indexes, shape measurement, object landmark identification, and Elliptical Fourier Analysis of object outlines (Claude (2008) <doi:10.1007/978-0-387-77789-4>). The package also provides a comprehensive pipeline for generating shapefiles with complex layouts and supports high-throughput phenotyping of RGB, multispectral, and hyperspectral orthomosaics. This functionality facilitates field phenotyping using UAV- or satellite-based imagery.
Some functions at the intersection of dplyr and purrr that formerly lived in purrr'.
Send requests to the PurpleAir Application Programming Interface (API; <https://community.purpleair.com/c/data/api/18>). Check a PurpleAir API key and get information about the related organization. Download real-time data from a single PurpleAir sensor or many sensors by sensor identifier, geographical bounding box, or time since modified. Download historical data from a single sensor. Stream real time data from monitors on a local area network.
Design, backtest, and analyze portfolio strategies using simple, English-like function chains. Includes technical indicators, flexible stock selection, portfolio construction methods (equal weighting, signal weighting, inverse volatility, hierarchical risk parity), and a compact backtesting engine for portfolio returns, drawdowns, and summary metrics.
Allows the comparison of data cohorts (DC) against a Counter Factual Model (CFM) and measures the difference in terms of an efficacy parameter. Allows the application of Personalised Synthetic Controls.
Proportional hazards estimation in the presence of a partially monotone likelihood has difficulties, in that finite estimators do not exist. These difficulties are related to those arising from logistic and multinomial regression. References for methods are given in the separate function documents. Supported by grant NSF DMS 1712839.
This package provides a collection of process capability index functions, such as C_p(), C_pk(), C_pm(), and others, along with metadata about each, like LaTeX equations and R expressions. Its primary purpose is to form a foundation for other quality control packages to build on top of, by providing basic resources and functions. The indices belong to the field of statistical quality control, and quantify the degree to which a manufacturing process is able to create items that adhere to a certain standard of quality. For details see Montgomery, D. C. (2019, ISBN:978-1-119-39930-8).
Drawing population pyramid using (1) data.frame or (2) vectors. The former is named as pyramid() and the latter pyramids(), as wrapper function of pyramid(). pyramidf() is the function to draw population pyramid within the specified frame.
Calculate and optimize dynamic performance ratings of association football teams competing in matches, in accordance with the method used in the research paper "Determining the level of ability of football teams by dynamic ratings based on the relative discrepancies in scores between adversaries", by Constantinou and Fenton (2013) <doi:10.1515/jqas-2012-0036> This dynamic rating system has proven to provide superior results for predicting association football outcomes.
This package implements a partial linear semiparametric mixed-effects model (PLSMM) featuring a random intercept and applies a lasso penalty to both the fixed effects and the coefficients associated with the nonlinear function. The model also accommodates interactions between the nonlinear function and a grouping variable, allowing for the capture of group-specific nonlinearities. Nonlinear functions are modeled using a set of bases functions. Estimation is conducted using a penalized Expectation-Maximization algorithm, and the package offers flexibility in choosing between various information criteria for model selection. Post-selection inference is carried out using a debiasing method, while inference on the nonlinear functions employs a bootstrap approach.
Interactively annotate base R graphics plots with freehand drawing, symbols (points, lines, arrows, rectangles, circles, ellipses), and text. This is useful for teaching, for example to visually explain certain plot elements, and creating quick sketches.
This package provides a customisable R shiny app for immersively visualising, mapping and annotating panospheric (360 degree) imagery. The flexible interface allows annotation of any geocoded images using up to 4 user specified dropdown menus. The app uses leaflet to render maps that display the geo-locations of images and panellum <https://pannellum.org/>, a lightweight panorama viewer for the web, to render images in virtual 360 degree viewing mode. Key functions include the ability to draw on & export parts of 360 images for downstream applications. Users can also draw polygons and points on map imagery related to the panoramic images and export them for further analysis. Downstream applications include using annotations to train Artificial Intelligence/Machine Learning (AI/ML) models and geospatial modelling and analysis of camera based survey data.
Be responsible when scraping data from websites by following polite principles: introduce yourself, ask for permission, take slowly and never ask twice.