Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates DNA target concentration by classifying digital PCR (polymerase chain reaction) droplets as positive, negative, or rain, using Expectation-Maximization Clustering. The fitting is accomplished using the EMMIXskew R package (v. 1.0.3) by Kui Wang, Angus Ng, and Geoff McLachlan (2018) as based on their paper "Multivariate Skew t Mixture Models: Applications to Fluorescence-Activated Cell Sorting Data" <doi:10.1109/DICTA.2009.88>.
Generate all necessary R/Rmd/shell files for data processing after running GGIR (v2.4.0) for accelerometer data. In part 1, all csv files in the GGIR output directory were read, transformed and then merged. In part 2, the GGIR output files were checked and summarized in one excel sheet. In part 3, the merged data was cleaned according to the number of valid hours on each night and the number of valid days for each subject. In part 4, the cleaned activity data was imputed by the average Euclidean norm minus one (ENMO) over all the valid days for each subject. Finally, a comprehensive report of data processing was created using Rmarkdown, and the report includes few exploratory plots and multiple commonly used features extracted from minute level actigraphy data.
Metadata and package cache for CRAN-like repositories. This is a utility package to be used by package management tools that want to take advantage of caching.
This package provides functions for quantifying visible (VIS) and ultraviolet (UV) radiation in relation to the photoreceptors Phytochromes, Cryptochromes, and UVR8 which are present in plants. It also includes data sets on the optical properties of plants. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
Smoothing splines with penalties on order m derivatives.
Construct parser combinator functions, higher order functions that parse input. Construction of such parsers is transparent and easy. Their main application is the parsing of structured text files like those generated by laboratory instruments. Based on a paper by Hutton (1992) <doi:10.1017/S0956796800000411>.
Extract and interact with data from the Scottish Health and Social Care Open Data platform <https://www.opendata.nhs.scot>.
Allows users to find a piecewise linear regression approximation to a given continuous univariate function within a specified error tolerance. Methods based on Warwicker and Rebennack (2025) "Efficient continuous piecewise linear regression for linearising univariate non-linear functions" <doi:10.1080/24725854.2023.2299809>.
An implementation of the generalized power analysis for the local average treatment effect (LATE), proposed by Bansak (2020) <doi:10.1214/19-STS732>. Power analysis is in the context of estimating the LATE (also known as the complier average causal effect, or CACE), with calculations based on a test of the null hypothesis that the LATE equals 0 with a two-sided alternative. The method uses standardized effect sizes to place a conservative bound on the power under minimal assumptions. Package allows users to recover power, sample size requirements, or minimum detectable effect sizes. Package also allows users to work with absolute effects rather than effect sizes, to specify an additional assumption to narrow the bounds, and to incorporate covariate adjustment.
This package provides functions and data-sets that are helpful for teaching statistics and data analysis. It was originally designed for use when teaching students in the Psychology Department at Nottingham Trent University.
Fits single- and multiple-group penalized factor analysis models via a trust-region algorithm with integrated automatic multiple tuning parameter selection (Geminiani et al., 2021 <doi:10.1007/s11336-021-09751-8>). Available penalties include lasso, adaptive lasso, scad, mcp, and ridge.
This package provides an object type and associated tools for storing and wrangling panel data. Implements several methods for creating regression models that take advantage of the unique aspects of panel data. Among other capabilities, automates the "within-between" (also known as "between-within" and "hybrid") panel regression specification that combines the desirable aspects of both fixed effects and random effects econometric models and fits them as multilevel models (Allison, 2009 <doi:10.4135/9781412993869.d33>; Bell & Jones, 2015 <doi:10.1017/psrm.2014.7>). These models can also be estimated via generalized estimating equations (GEE; McNeish, 2019 <doi:10.1080/00273171.2019.1602504>) and Bayesian estimation is (optionally) supported via Stan'. Supports estimation of asymmetric effects models via first differences (Allison, 2019 <doi:10.1177/2378023119826441>) as well as a generalized linear model extension thereof using GEE.
In Shiny apps, it is sometimes useful to store information on a particular item in a tooltip. Prompter allows you to easily create such tooltips, using Hint.css'.
This package provides functions used for analyzing count data, mostly crime counts. Includes checking difference in two Poisson counts (e-test), checking the fit for a Poisson distribution, small sample tests for counts in bins, Weighted Displacement Difference test (Wheeler and Ratcliffe, 2018) <doi:10.1186/s40163-018-0085-5>, to evaluate crime changes over time in treated/control areas. Additionally includes functions for aggregating spatial data and spatial feature engineering.
This package provides profile likelihoods for a parameter of interest in commonly used statistical models. The models include linear models, generalized linear models, proportional odds models, linear mixed-effects models, and linear models for longitudinal responses fitted by generalized least squares. The package also provides plots for normalized profile likelihoods as well as the maximum profile likelihood estimates and the kth likelihood support intervals.
This package provides propensity score weighting methods to control for confounding in causal inference with dichotomous treatments and continuous/binary outcomes. It includes the following functional modules: (1) visualization of the propensity score distribution in both treatment groups with mirror histogram, (2) covariate balance diagnosis, (3) propensity score model specification test, (4) weighted estimation of treatment effect, and (5) augmented estimation of treatment effect with outcome regression. The weighting methods include the inverse probability weight (IPW) for estimating the average treatment effect (ATE), the IPW for average treatment effect of the treated (ATT), the IPW for the average treatment effect of the controls (ATC), the matching weight (MW), the overlap weight (OVERLAP), and the trapezoidal weight (TRAPEZOIDAL). Sandwich variance estimation is provided to adjust for the sampling variability of the estimated propensity score. These methods are discussed by Hirano et al (2003) <DOI:10.1111/1468-0262.00442>, Lunceford and Davidian (2004) <DOI:10.1002/sim.1903>, Li and Greene (2013) <DOI:10.1515/ijb-2012-0030>, and Li et al (2016) <DOI:10.1080/01621459.2016.1260466>.
Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999).
Fit finite mixtures of Plackett-Luce models for partial top rankings/orderings within the Bayesian framework. It provides MAP point estimates via EM algorithm and posterior MCMC simulations via Gibbs Sampling. It also fits MLE as a special case of the noninformative Bayesian analysis with vague priors. In addition to inferential techniques, the package assists other fundamental phases of a model-based analysis for partial rankings/orderings, by including functions for data manipulation, simulation, descriptive summary, model selection and goodness-of-fit evaluation. Main references on the methods are Mollica and Tardella (2017) <doi:10.1007/s11336-016-9530-0> and Mollica and Tardella (2014) <doi:10.1002/sim.6224>.
Validate data in data frames, tibble objects, Spark DataFrames', and database tables. Validation pipelines can be made using easily-readable, consecutive validation steps. Upon execution of the validation plan, several reporting options are available. User-defined thresholds for failure rates allow for the determination of appropriate reporting actions. Many other workflows are available including an information management workflow, where the aim is to record, collect, and generate useful information on data tables.
This takes in a series of multi-layer raster files and returns a phenology projection raster, following methodologies described in John (2016) <https://etda.libraries.psu.edu/catalog/13521clj5135>.
This package provides a comprehensive set of tools to simulate, evaluate, and compare model-assisted designs for early-phase (Phase I/II) clinical trials, including: - BOIN12 (Bayesian optimal interval phase 1/11 trial design; Lin et al. (2020) <doi:10.1200/PO.20.00257>), - BOIN-ET (Takeda, K., Taguri, M., & Morita, S. (2018) <doi:10.1002/pst.1864>), - EffTox (Thall, P. F., & Cook, J. D. (2004) <doi:10.1111/j.0006-341X.2004.00218.x>), - Ji3+3 (Joint i3+3 design; Lin, X., & Ji, Y. (2020) <doi:10.1080/10543406.2020.1818250>), - PRINTE (probability intervals of toxicity and efficacy design; Lin, X., & Ji, Y. (2021) <doi:10.1177/0962280220977009>), - STEIN (simple toxicity and efficacy interval design; Lin, R., & Yin, G. (2017) <doi:10.1002/sim.7428>), - TEPI (toxicity and efficacy probability interval design; Li, D. H., Whitmore, J. B., Guo, W., & Ji, Y. (2017) <doi:10.1158/1078-0432.CCR-16-1125>), - uTPI (utility-based toxicity Probability interval design; Shi, H., Lin, R., & Lin, X. (2024) <doi:10.1002/sim.8922>). Includes flexible simulation parameters that allow researchers to efficiently compute operating characteristics under various fixed and random trial scenarios and export the results.
This package provides a comprehensive implementation of Petersen-type estimators and its many variants for two-sample capture-recapture studies. A conditional likelihood approach is used that allows for tag loss; non reporting of tags; reward tags; categorical, geographical and temporal stratification; partial stratification; reverse capture-recapture; and continuous variables in modeling the probability of capture. Many examples from fisheries management are presented.
This package implements transformations of p-values to the smallest possible Bayes factor within the specified class of alternative hypotheses, as described in Held & Ott (2018, <doi:10.1146/annurev-statistics-031017-100307>). Covers several common testing scenarios such as z-tests, t-tests, likelihood ratio tests and the F-test.
Enrichment analysis enables researchers to uncover mechanisms underlying a phenotype. However, conventional methods for enrichment analysis do not take into account protein-protein interaction information, resulting in incomplete conclusions. pathfindR is a tool for enrichment analysis utilizing active subnetworks. The main function identifies active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values. It then performs enrichment analyses on the identified subnetworks, identifying enriched terms (i.e. pathways or, more broadly, gene sets) that possibly underlie the phenotype of interest. pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results. The enrichment, clustering and other methods implemented in pathfindR are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2019. pathfindR': An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front. Genet. <doi:10.3389/fgene.2019.00858>.