Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Toolkit for fitting point process models with sequences of LASSO penalties ("regularisation paths"), as described in Renner, I.W. and Warton, D.I. (2013) <doi:10.1111/j.1541-0420.2012.01824.x>. Regularisation paths of Poisson point process models or area-interaction models can be fitted with LASSO, adaptive LASSO or elastic net penalties. A number of criteria are available to judge the bias-variance tradeoff.
Replace the standard print method for functions with one that performs syntax highlighting, using ANSI colors, if the terminal supports them.
This package provides functions to get prediction intervals and prediction points of future observations from any continuous distribution.
This package implements novel tools for estimating sample sizes needed for phylogenetic studies, including studies focused on estimating the probability of true pathogen transmission between two cases given phylogenetic linkage and studies focused on tracking pathogen variants at a population level. Methods described in Wohl, Giles, and Lessler (2021) and in Wohl, Lee, DiPrete, and Lessler (2023).
An implementation of reliability estimation methods described in the paper (Bosnic, Z., & Kononenko, I. (2008) <doi:10.1007/s10489-007-0084-9>), which allows you to test the reliability of a single predicted instance made by your model and prediction function. It also allows you to make a correlation test to estimate which reliability estimate is the most accurate for your model.
Games that can be played in the R console. Includes coin flip, hangman, jumble, magic 8 ball, poker, rock paper scissors, shut the box, spelling bee, and 2048.
This package provides functions and example datasets for phytosociological analysis, forest inventory, biomass and carbon estimation, and visualization of vegetation data. Includes functions to compute structural parameters [phytoparam(), summary.param(), stats()], estimate above-ground biomass and carbon [AGB()], stratify wood volume by diameter at breast height (DBH) classes [stratvol()], generate collector and rarefaction curves [collector.curve(), rarefaction()], and visualize basal areas on quadrat maps [BAplot(), including rectangular plots and individual coordinates]. Several example datasets are provided to demonstrate the functionality of these tools. For more details see FAO (1981, ISBN:92-5-101132-X) "Manual of forest inventory", IBGE (2012, ISBN:9788524042720) "Manual técnico da vegetação brasileira" and Heringer et al. (2020) "Phytosociology in R: A routine to estimate phytosociological parameters" <doi:10.22533/at.ed.3552009033>.
The introduction of the broom package has made converting model objects into data frames as simple as a single function. While the broom package focuses on providing tidy data frames that can be used in advanced analysis, it deliberately stops short of providing functionality for reporting models in publication-ready tables. pixiedust provides this functionality with a programming interface intended to be similar to ggplot2's system of layers with fine tuned control over each cell of the table. Options for output include printing to the console and to the common markdown formats (markdown, HTML, and LaTeX). With a little pixiedust (and happy thoughts) tables can really fly.
Large-scale gene expression studies allow gene network construction to uncover associations among genes. This package is developed for estimating and testing partial correlation graphs with prior information incorporated.
An integrative toolbox of word embedding research that provides: (1) a collection of pre-trained static word vectors in the .RData compressed format <https://psychbruce.github.io/WordVector_RData.pdf>; (2) a group of functions to process, analyze, and visualize word vectors; (3) a range of tests to examine conceptual associations, including the Word Embedding Association Test <doi:10.1126/science.aal4230> and the Relative Norm Distance <doi:10.1073/pnas.1720347115>, with permutation test of significance; and (4) a set of training methods to locally train (static) word vectors from text corpora, including Word2Vec <doi:10.48550/arXiv.1301.3781>, GloVe <doi:10.3115/v1/D14-1162>, and FastText <doi:10.48550/arXiv.1607.04606>.
Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
This package provides a friendly API for sequence iteration and set comprehension.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Children Age 5-17 questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
Implementation of penalized regression with second-generation p-values for variable selection. The algorithm can handle linear regression, GLM, and Cox regression. S3 methods print(), summary(), coef(), predict(), and plot() are available for the algorithm. Technical details can be found at Zuo et al. (2021) <doi:10.1080/00031305.2021.1946150>.
Useful git hooks for R building on top of the multi-language framework pre-commit for hook management. This package provides git hooks for common tasks like formatting files with styler or spell checking as well as wrapper functions to access the pre-commit executable.
Gene-level variant association tests with disease status for pedigree data: kernel and burden association statistics.
Routines for PLS-based genomic analyses, implementing PLS methods for classification with microarray data and prediction of transcription factor activities from combined ChIP-chip analysis. The >=1.2-1 versions include two new classification methods for microarray data: GSIM and Ridge PLS. The >=1.3 versions includes a new classification method combining variable selection and compression in logistic regression context: logit-SPLS; and an adaptive version of the sparse PLS.
Calibrate p-values under a robust perspective using the methods developed by Sellke, Bayarri, and Berger (2001) <doi:10.1198/000313001300339950> and obtain measures of the evidence provided by the data in favor of point null hypotheses which are safer and more straightforward to interpret.
This package provides an interface to the PubChem database via the PUG REST <https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest> and PUG View <https://pubchem.ncbi.nlm.nih.gov/docs/pug-view> services. This package allows users to automatically access chemical and biological data from PubChem', including compounds, substances, assays, and various other data types. Functions are available to retrieve data in different formats, perform searches, and access detailed annotations.
Plot principal component histograms around a bivariate scatter plot.
Plot both fixed and random effects of linear mixed models, multilevel models in a single spaghetti plot. The package allows to visualize the effect of a predictor on a criterion between different levels of a grouping variable. Additionally, confidence intervals can be displayed for fixed effects. Calculation of predicted values of random effects allows only models with one random intercept and/or one random slope to be plotted. Confidence intervals and predicted values of fixed effects are computed using the ggpredict function from the ggeffects package. Lüdecke, D. (2018) <doi:10.21105/joss.00638>.
Generates Proteomics (PTX) quality control (QC) reports for shotgun LC-MS data analyzed with the MaxQuant software suite (from .txt files) or mzTab files (ideally from OpenMS QualityControl tool). Reports are customizable (target thresholds, subsetting) and available in HTML or PDF format. Published in J. Proteome Res., Proteomics Quality Control: Quality Control Software for MaxQuant Results (2015) <doi:10.1021/acs.jproteome.5b00780>.
This package provides a RStudio addin allowing to paste the content of the clipboard as a comment block or as roxygen lines. This is very useful to insert an example in the roxygen block.
This package provides a portfolio of tools for economic complexity analysis and industrial upgrading navigation. The package implements essential measures in international trade and development economics, including the relative comparative advantage (RCA), economic complexity index (ECI) and product complexity index (PCI). It enables users to analyze export structures, explore product relatedness, and identify potential upgrading paths grounded in economic theory, following the framework in Hausmann et al. (2014) <doi:10.7551/mitpress/9647.001.0001>.