Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Historic Pell grant data as provided by the US Department of Education. This package contains data about how much pell grant was awarded by which institution in which year. This data comes from the US Department of Education. Raw data can be downloaded from here: <https://www2.ed.gov/finaid/prof/resources/data/pell-institution.html>.
Validation of risk predictions obtained from survival models and competing risk models based on censored data using inverse weighting and cross-validation. Most of the pec functionality has been moved to riskRegression'.
This package provides a coding assistant using Perplexity's Large Language Models <https://www.perplexity.ai/> API. A set of functions and RStudio add-ins that aim to help R developers.
Measure productivity and efficiency using Data Envelopment Analysis (DEA). Available methods include DEA under different technology assumptions, bootstrapping of efficiency scores and calculation of the Malmquist productivity index. Analyses can be performed either in the console or with the provided shiny app. See Banker, R.; Charnes, A.; Cooper, W.W. (1984) <doi:10.1287/mnsc.30.9.1078>, Färe, R.; Grosskopf, S. (1996) <doi:10.1007/978-94-009-1816-0>.
This package provides tools for processing, analyzing, and visualizing spectral data collected from 3D laser-based scanning systems. Supports applications in agriculture, forestry, environmental monitoring, industrial quality control, and biomedical research. Enables evaluation of plant growth, productivity, resource efficiency, disease management, and pest monitoring. Includes statistical methods for extracting insights from multispectral and hyperspectral data and generating publication-ready visualizations. See Zieschank & Junker (2023) <doi:10.3389/fpls.2023.1141554> and Saric et al. (2022) <doi:10.1016/J.TPLANTS.2021.12.003> for related work.
An integrative toolbox of word embedding research that provides: (1) a collection of pre-trained static word vectors in the .RData compressed format <https://psychbruce.github.io/WordVector_RData.pdf>; (2) a group of functions to process, analyze, and visualize word vectors; (3) a range of tests to examine conceptual associations, including the Word Embedding Association Test <doi:10.1126/science.aal4230> and the Relative Norm Distance <doi:10.1073/pnas.1720347115>, with permutation test of significance; and (4) a set of training methods to locally train (static) word vectors from text corpora, including Word2Vec <doi:10.48550/arXiv.1301.3781>, GloVe <doi:10.3115/v1/D14-1162>, and FastText <doi:10.48550/arXiv.1607.04606>.
This package provides functions which facilitate harmonization of data from multiple different datasets. Data harmonization involves taking data sources with differing values, creating coding instructions to create a harmonized set of values, then making those data modifications. psHarmonize will assist with data modification once the harmonization instructions are written. Coding instructions are written by the user to create a "harmonization sheet". This sheet catalogs variable names, domains (e.g. clinical, behavioral, outcomes), provides R code instructions for mapping or conversion of data, specifies the variable name in the harmonized data set, and tracks notes. The package will then harmonize the source datasets according to the harmonization sheet to create a harmonized dataset. Once harmonization is finished, the package also has functions that will create descriptive statistics using RMarkdown'. Data Harmonization guidelines have been described by Fortier I, Raina P, Van den Heuvel ER, et al. (2017) <doi:10.1093/ije/dyw075>. Additional details of our R package have been described by Stephen JJ, Carolan P, Krefman AE, et al. (2024) <doi:10.1016/j.patter.2024.101003>.
Simple method of purging independent variables of mediating effects. First, regress the direct variable on the indirect variable. Then, used the stored residuals as the new purged (direct) variable in the updated specification. This purging process allows for use of a new direct variable uncorrelated with the indirect variable. Please cite the method and/or package using Waggoner, Philip D. (2018) <doi:10.1177/1532673X18759644>.
We implement two least-squares estimators under k-monotony constraint using a method based on the Support Reduction Algorithm from Groeneboom et al (2008) <DOI:10.1111/j.1467-9469.2007.00588.x>. The first one is a projection estimator on the set of k-monotone discrete functions. The second one is a projection on the set of k-monotone discrete probabilities. This package provides functions to generate samples from the spline basis from Lefevre and Loisel (2013) <DOI:10.1239/jap/1378401239>, and from mixtures of splines.
Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
Power analysis for AB testing. The calculations are based on the Welch's unequal variances t-test, which is generally preferred over the Student's t-test when sample sizes and variances of the two groups are unequal, which is frequently the case in AB testing. In such situations, the Student's t-test will give biased results due to using the pooled standard deviation, unlike the Welch's t-test.
An implementation of prediction intervals for random-effects meta-analysis: Higgins et al. (2009) <doi:10.1111/j.1467-985X.2008.00552.x>, Partlett and Riley (2017) <doi:10.1002/sim.7140>, and Nagashima et al. (2019) <doi:10.1177/0962280218773520>, <arXiv:1804.01054>.
The PDE (Pdf Data Extractor) allows the extraction of information and tables optionally based on search words from PDF (Portable Document Format) files and enables the visualization of the results, both by providing a convenient user-interface.
Evaluation of the pdf and the cdf of the univariate, noncentral, p-generalized normal distribution. Sampling from the univariate, noncentral, p-generalized normal distribution using either the p-generalized polar method, the p-generalized rejecting polar method, the Monty Python method, the Ziggurat method or the method of Nardon and Pianca. The package also includes routines for the simulation of the bivariate, p-generalized uniform distribution and the simulation of the corresponding angular distribution.
This package provides tools for loading and processing passive acoustic data. Read in data that has been processed in Pamguard (<https://www.pamguard.org/>), apply a suite processing functions, and export data for reports or external modeling tools. Parameter calculations implement methods by Oswald et al (2007) <doi:10.1121/1.2743157>, Griffiths et al (2020) <doi:10.1121/10.0001229> and Baumann-Pickering et al (2010) <doi:10.1121/1.3479549>.
R interface to PRIMME <https://www.cs.wm.edu/~andreas/software/>, a C library for computing a few eigenvalues and their corresponding eigenvectors of a real symmetric or complex Hermitian matrix, or generalized Hermitian eigenproblem. It can also compute singular values and vectors of a square or rectangular matrix. PRIMME finds largest, smallest, or interior singular/eigenvalues and can use preconditioning to accelerate convergence. General description of the methods are provided in the papers Stathopoulos (2010, <doi:10.1145/1731022.1731031>) and Wu (2017, <doi:10.1137/16M1082214>). See citation("PRIMME") for details.
Allows specification and fitting of some parameter estimation examples inspired by time-resolved spectroscopy via a Shiny GUI.
Shrinkage estimator for polygenic risk prediction (PRS) models based on summary statistics of genome-wide association (GWA) studies. Based upon the methods and original PANPRS package as found in: Chen, Chatterjee, Landi, and Shi (2020) <doi:10.1080/01621459.2020.1764849>.
Hexadecimal codes are typically used to represent colors in R. Connecting these codes to their colors requires practice or memorization. palette provides a vctrs class for working with color palettes, including printing and plotting functions. The goal of the class is to place visual representations of color palettes directly on or, at least, next to their corresponding character representations. Palette extensions also are provided for data frames using pillar'.
Estimating causal effects in the presence of post-treatment confounding using principal stratification. PStrata allows for customized monotonicity assumptions and exclusion restriction assumptions, with automatic full Bayesian inference supported by Stan'. The main function to use in this package is PStrata(), which provides posterior estimates of principal causal effect with uncertainty quantification. Visualization tools are also provided for diagnosis and interpretation. See Liu and Li (2023) <arXiv:2304.02740> for details.
Collection of pivotal algorithms for: relabelling the MCMC chains in order to undo the label switching problem in Bayesian mixture models; fitting sparse finite mixtures; initializing the centers of the classical k-means algorithm in order to obtain a better clustering solution. For further details see Egidi, Pappadà , Pauli and Torelli (2018b)<ISBN:9788891910233>.
Facilitates analysis of paleontological sequences of trait values. Functions are provided to fit, using maximum likelihood, simple evolutionary models (including unbiased random walks, directional evolution,stasis, Ornstein-Uhlenbeck, covariate-tracking) and complex models (punctuation, mode shifts).
Run Queries against the API of Piwik Pro <https://developers.piwik.pro/en/latest/custom_reports/http_api/http_api.html>. The result is a tibble.
This package provides functions to calculate commonly used public health statistics and their confidence intervals using methods approved for use in the production of Public Health England indicators such as those presented via Fingertips (<https://fingertips.phe.org.uk/>). It provides functions for the generation of proportions, crude rates, means, directly standardised rates, indirectly standardised rates, standardised mortality ratios, slope and relative index of inequality and life expectancy. Statistical methods are referenced in the following publications. Breslow NE, Day NE (1987) <doi:10.1002/sim.4780080614>. Dobson et al (1991) <doi:10.1002/sim.4780100317>. Armitage P, Berry G (2002) <doi:10.1002/9780470773666>. Wilson EB. (1927) <doi:10.1080/01621459.1927.10502953>. Altman DG et al (2000, ISBN: 978-0-727-91375-3). Chiang CL. (1968, ISBN: 978-0-882-75200-6). Newell C. (1994, ISBN: 978-0-898-62451-9). Eayres DP, Williams ES (2004) <doi:10.1136/jech.2003.009654>. Silcocks PBS et al (2001) <doi:10.1136/jech.55.1.38>. Low and Low (2004) <doi:10.1093/pubmed/fdh175>. Fingertips Public Health Technical Guide: <https://fingertips.phe.org.uk/static-reports/public-health-technical-guidance/>.