This package generates ranked lists of differential gene expression for either disease or drug profiles. Input data can be downloaded from Array Express or GEO, or from local CEL files. Ranked lists of differential expression and associated p-values are calculated using Limma. Enrichment scores (Subramanian et al. PNAS 2005) are calculated to a reference set of default drug or disease profiles, or a set of custom data supplied by the user. Network visualisation of significant scores are output in Cytoscape format.
This package contains: 1. A microarray gene expression dataset from a human breast cancer study. 2. A RNA-Seq gene expression dataset from a mouse study on IFNG knockout. 3. ID mapping tables between gene IDs and SBGN-ML file glyph IDs. 4. Percent of orthologs detected in other species of the genes in a pathway. Cutoffs of this percentage for defining if a pathway exists in another species. 5. XML text of SBGN-ML files for all pre-collected pathways.
Add-on package to the airGR package that simplifies its use and is aimed at being used for teaching hydrology. The package provides 1) three functions that allow to complete very simply a hydrological modelling exercise 2) plotting functions to help students to explore observed data and to interpret the results of calibration and simulation of the GR ('Génie rural') models 3) a Shiny graphical interface that allows for displaying the impact of model parameters on hydrographs and models internal variables.
This package provides an efficient suite of R tools for scorecard modeling, analysis, and visualization. Including equal frequency binning, equidistant binning, K-means binning, chi-square binning, decision tree binning, data screening, manual parameter modeling, fully automatic generation of scorecards, etc. This package is designed to make scorecard development easier and faster. References include: 1. <http://shichen.name/posts/>. 2. Dong-feng Li(Peking University),Class PPT. 3. <https://zhuanlan.zhihu.com/p/389710022>. 4. <https://www.zhangshengrong.com/p/281oqR9JNw/>.
Utilities for handling dates and times, such as selecting particular days of the week or month, formatting timestamps as required by RSS feeds, or converting timestamp representations of other software (such as MATLAB and Excel') to R. The package is lightweight (no dependencies, pure R implementations) and relies only on R's standard classes to represent dates and times ('Date and POSIXt'); it aims to provide efficient implementations, through vectorisation and the use of R's native numeric representations of timestamps where possible.
This package implements the Interval Consensus Model (ICM) for analyzing continuous bounded interval-valued responses in psychometrics using Stan for Bayesian estimation. Provides functions for transforming interval data to simplex representations, fitting item response theory (IRT) models with isometric log-ratio (ILR) and sum log-ratio (SLR) link functions, and visualizing results. The package enables aggregation and analysis of interval-valued response data commonly found in psychological measurement and related disciplines. Based on Kloft et al. (2024) <doi:10.31234/osf.io/dzvw2>.
Offers a rich and diverse collection of datasets focused on the brain, nervous system, and related disorders. The package includes clinical, experimental, neuroimaging, behavioral, cognitive, and simulated data on conditions such as Parkinson's disease, Alzheimer's, epilepsy, schizophrenia, gliomas, and mental health. Datasets cover structural and functional brain data, neurotransmission, gene expression, cognitive performance, and treatment outcomes. Designed for researchers, neuroscientists, clinicians, psychologists, data scientists, and students, this package facilitates exploratory data analysis, statistical modeling, and hypothesis testing in neuroscience and neuroepidemiology.
The Structstrings package implements the widely used dot bracket annotation for storing base pairing information in structured RNA. Structstrings uses the infrastructure provided by the Biostrings package and derives the DotBracketString and related classes from the BString class. From these, base pair tables can be produced for in depth analysis. In addition, the loop indices of the base pairs can be retrieved as well. For better efficiency, information conversion is implemented in C, inspired to a large extend by the ViennaRNA package.
Trading of Condor Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Analyse time to event data with two time scales by estimating a smooth hazard that varies over two time scales and also, if covariates are available, to estimate a proportional hazards model with such a two-dimensional baseline hazard. Functions are provided to prepare the raw data for estimation, to estimate and to plot the two-dimensional smooth hazard. Extension to a competing risks model are implemented. For details about the method please refer to Carollo et al. (2024) <doi:10.1002/sim.10297>.
Examine any number of time series data frames to identify instances in which various criteria are met within specified time frames. In clinical medicine, these types of events are often called "constellations of signs and symptoms", because a single condition depends on a series of events occurring within a certain amount of time of each other. This package was written to work with any number of time series data frames and is optimized for speed to work well with data frames with millions of rows.
Computing transitive (and non-transitive) index numbers (Coelli et al., 2005 <doi:10.1007/b136381>) for cross-sections and panel data. For the calculation of transitive indexes, the EKS (Coelli et al., 2005 <doi:10.1007/b136381>; Rao et al., 2002 <doi:10.1007/978-1-4615-0851-9_4>) and Minimum spanning tree (Hill, 2004 <doi:10.1257/0002828043052178>) methods are implemented. Traditional fixed-base and chained indexes, and their growth rates, can also be derived using the Paasche, Laspeyres, Fisher and Tornqvist formulas.
This package aligns LC-HRMS metabolomics datasets acquired from biologically similar specimens analyzed under similar, but not necessarily identical, conditions. Peak-picked and simply aligned metabolomics feature tables (consisting of m/z, rt, and per-sample abundance measurements, plus optional identifiers & adduct annotations) are accepted as input. The package outputs a combined table of feature pair alignments, organized into groups of similar m/z, and ranked by a similarity score. Input tables are assumed to be acquired using similar (but not necessarily identical) analytical methods.
This package provides a resampling-based inference based on data resampling and permutation.
Features:
Bootstrap resampling: ordinary or balanced with optional stratification
Extended bootstrap resampling: also varies sample size
Parametric resampling: Gaussian, Poisson, gamma, etc.)
Jackknife estimates of bias and variance of any estimator
Compute bootstrap confidence intervals (percentile or BCa) for any estimator
Permutation-based variants of traditional statistical tests (USP test of independence and others)
Tools for working with empirical distributions (CDF, quantile, etc.)
Plotting package based on the grid system, combining elements of a bubble plot and heatmap to conveniently display two numerical variables, (represented by color and size) grouped by categorical variables on the x and y axes. This is a useful alternative to a forest plot when the data can be grouped in two dimensions, such as predictors x outcomes. It has particular advantages for visualising the metabolic measures produced by the Nightingale Health metabolomics platform, and templates are included for automatically generating figures from these datasets.
Estimation and statistical process control are performed under copula-based time-series models. Available are statistical methods in Long and Emura (2014 JCSA), Emura et al. (2017 Commun Stat-Simul) <DOI:10.1080/03610918.2015.1073303>, Huang and Emura (2021 Commun Stat-Simul) <DOI:10.1080/03610918.2019.1602647>, Lin et al. (2021 Comm Stat-Simul) <DOI:10.1080/03610918.2019.1652318>, Sun et al. (2020 JSS Series in Statistics)<DOI:10.1007/978-981-15-4998-4>, and Huang and Emura (2021, in revision).
Creating dendrochronological networks based on the similarity between tree-ring series or chronologies. The package includes various functions to compare tree-ring curves building upon the dplR package. The networks can be used to visualise and understand the relations between tree-ring curves. These networks are also very useful to estimate the provenance of wood as described in Visser (2021) <DOI:10.5334/jcaa.79> or wood-use within a structure/context/site as described in Visser and Vorst (2022) <DOI:10.1163/27723194-bja10014>.
Subsampling methods for big data under different models and assumptions. Starting with linear regression and leading to Generalised Linear Models, softmax regression, and quantile regression. Specifically, the model-robust subsampling method proposed in Mahendran, A., Thompson, H., and McGree, J. M. (2023) <doi:10.1007/s00362-023-01446-9>, where multiple models can describe the big data, and the subsampling framework for potentially misspecified Generalised Linear Models in Mahendran, A., Thompson, H., and McGree, J. M. (2025) <doi:10.48550/arXiv.2510.05902>.
This package provides implementations of some of the most important outlier detection algorithms. Includes a tutorial mode option that shows a description of each algorithm and provides a step-by-step execution explanation of how it identifies outliers from the given data with the specified input parameters. References include the works of Azzedine Boukerche, Lining Zheng, and Omar Alfandi (2020) <doi:10.1145/3381028>, Abir Smiti (2020) <doi:10.1016/j.cosrev.2020.100306>, and Xiaogang Su, Chih-Ling Tsai (2011) <doi:10.1002/widm.19>.
This library is a collection of pseudo random number generators.
While Common Lisp does provide a RANDOM function, it does not allow the user to pass an explicit SEED, nor to portably exchange the random state between implementations. This can be a headache in cases like games, where a controlled seeding process can be very useful.
For both curiosity and convenience, this library offers multiple algorithms to generate random numbers, as well as a bunch of generally useful methods to produce desired ranges.
Perform Nonlinear Mixed-Effects (NLME) Modeling using Certara's NLME-Engine. Access the same Maximum Likelihood engines used in the Phoenix platform, including algorithms for parametric methods, individual, and pooled data analysis. The Quasi-Random Parametric Expectation-Maximization Method (QRPEM) is also supported <https://www.page-meeting.org/default.asp?abstract=2338>. Execution is supported both locally or on remote machines. Remote execution includes support for Linux Sun Grid Engine (SGE), Simple Linux Utility for Resource Management (SLURM) grids, Linux and Windows multicore, and individual runs.
This package provides a standalone package combining several stop-word lists for 65 languages with a median of 329 stop words for language and over 1,000 entries for English, Breton, Latin, Slovenian, and Ancient Greek! The user automatically gets access to all the unique stop words contained in: the StopwordISO repository; the Natural Language Toolkit for python'; the Snowball stop-word list; the R package quanteda'; the marimo repository; the Perseus project; and A. Berra's list of stop words for Ancient Greek and Latin.
This package provides functions for extracting text and tables from PDF-based order documents. It provides an n-gram-based approach for identifying the language of an order document. It furthermore uses R-package pdftools to extract the text from an order document. In the case that the PDF document is only including an image (because it is scanned document), R package tesseract is used for OCR. Furthermore, the package provides functionality for identifying and extracting order position tables in order documents based on a clustering approach.
This is an R package for the imputation of left-censored data under a compositional approach. The implemented methods consider aspects of relevance for a compositional approach such as scale invariance, subcompositional coherence or preserving the multivariate relative structure of the data. Based on solid statistical frameworks, it comprises the ability to deal with single and varying censoring thresholds, consistent treatment of closed and non-closed data, exploratory tools, multiple imputation, Markov Chain Monte Carlo (MCMC), robust and non-parametric alternatives, and recent proposals for count data.