Companion package of Arnaud Barat, Andreu Sansó, Maite Arilla-Osuna, Ruth Blasco, Iñaki Pérez-Fernández, Gabriel Cifuentes-Alcobenda, Rubén Llorente, Daniel Vivar-Rà os, Ella Assaf, Ran Barkai, Avi Gopher, & Jordi Rosell-Ardèvol (2025), "Quantifying Diversity through Entropy Decomposition. Insights into Hominin Occupation and Carcass Processing at Qesem cave".
If one treated group is matched to one control reservoir in two different ways to produce two sets of treated-control matched pairs, then the two control groups may be entwined, in the sense that some control individuals are in both control groups. The exterior match is used to compare the two control groups.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
The Scott-Knott Effect Size Difference (ESD) test is a mean comparison approach that leverages a hierarchical clustering to partition the set of treatment means (e.g., means of variable importance scores, means of model performance) into statistically distinct groups with non-negligible difference [Tantithamthavorn et al., (2018) <doi:10.1109/TSE.2018.2794977>].
Implement a shrinkage estimation for the univariate normal mean based on a preliminary test (pretest) estimator. This package also provides the confidence interval based on pivoting the cumulative density function. The methodologies are published in Taketomi et al.(2024) <doi:10.1007/s42081-023-00221-2> and Taketomi et al.(2024-)(under review).
a Shiny application containing a suite of graphical and statistical tools to support clinical assessment of low coverage regions.It displays three web pages each providing a different analysis module: Coverage analysis, calculate AF by allele frequency app and binomial distribution. uncoverAPP provides a statisticl summary of coverage given target file or genes name.
Extends blockr.core with interactive blocks for data visualization using ggplot2'. Users can build charts through a graphical interface without writing code directly. Includes common chart types (bar charts, line charts, pie charts, scatter plots) as well as statistical plots (boxplots, histograms, density plots, violin plots) with rich customization options and intuitive user interfaces.
This package provides functions to randomly select, return, and print quotes or entire scenes from the American version of the show the Office. Receive laughs from one of of the greatest sitcoms of all time on demand. Add these functions to your .Rprofile to get a good laugh everytime you start a new R session.
This package creates lowpass filters which are commonly used in ion channel recordings. It supports generation of random numbers that are filtered, i.e. follow a model for ion channel recordings, see <doi:10.1109/TNB.2018.2845126>. Furthermore, time continuous convolutions of piecewise constant signals with the kernel of lowpass filters can be computed.
Function multiroc() can be used for computing and visualizing Receiver Operating Characteristics (ROC) and Area Under the Curve (AUC) for multi-class classification problems. It supports both One-vs-One approach by M.Bishop, C. (2006, ISBN:978-0-387-31073-2) and One-vs-All approach by Murphy P., K. (2012, ISBN:9780262018029).
This package provides functions are provided for calculating efficiency using multiplier DEA (Data Envelopment Analysis): Measuring the efficiency of decision making units (Charnes et al., 1978 <doi:10.1016/0377-2217(78)90138-8>) and cross efficiency using single and two-phase approach. In addition, it includes some datasets for calculating efficiency and cross efficiency.
New wavelet methodology (vector wavelet coherence) (Oygur, T., Unal, G, 2020 <doi:10.1007/s40435-020-00706-y>) to handle dynamic co-movements of multivariate time series via extending multiple and quadruple wavelet coherence methodologies. This package can be used to perform multiple wavelet coherence, quadruple wavelet coherence, and n-dimensional vector wavelet coherence analyses.
This package is designed to facilitate comparison of automated gating methods against manual gating done in flowJo. This package allows you to import basic flowJo workspaces into BioConductor and replicate the gating from flowJo using the flowCore functionality. Gating hierarchies, groups of samples, compensation, and transformation are performed so that the output matches the flowJo analysis.
This package provides a fast, scalable, and versatile framework for simulating large systems with Gillespie's Stochastic Simulation Algorithm (SSA). This package is the spiritual successor to the GillespieSSA package. Benefits of this package include major speed improvements (>100x), easier to understand documentation, and many unit tests that try to ensure the package works as intended.
This package provides a comprehensive collection of datasets exclusively focused on crimes, criminal activities, and related topics. This package serves as a valuable resource for researchers, analysts, and students interested in crime analysis, criminology, social and economic studies related to criminal behavior. Datasets span global and local contexts, with a mix of tabular and spatial data.
It has been designed to calculate the required sample size in randomized clinical trials with composite endpoints. It also calculates the expected effect and the probability of observing the composite endpoint, among others. The methodology can be found in Bofill & Gómez (2019) <doi:10.1002/sim.8092> and Gómez & Lagakos (2013) <doi:10.1002/sim.5547>.
This package provides tools to simulate genetic distance matrices, align and compare them via multidimensional scaling (MDS) and Procrustes, and evaluate imputation with the Bootstrapping Evaluation for Structural Missingness Imputation (BESMI) framework. Methods align with Zhu et al. (2025) <doi:10.3389/fpls.2025.1543956> and the associated software resource Zhu (2025) <doi:10.26188/28602953>.
Inference, goodness-of-fit test, and prediction densities and intervals for univariate Gaussian Hidden Markov Models (HMM). The goodness-of-fit is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Chapter 10.2 of Remillard (2013) <doi:10.1201/b14285>.
Insurance datasets, which are often used in claims severity and claims frequency modelling. It helps testing new regression models in those problems, such as GLM, GLMM, HGLM, non-linear mixed models etc. Most of the data sets are applied in the project "Mixed models in ratemaking" supported by grant NN 111461540 from Polish National Science Center.
This package implements calculation of probability density function, cumulative distribution function, equicoordinate quantile function and survival function, and random numbers generation for the following multivariate distributions: Lomax (Pareto Type II), generalized Lomax, Mardiaâ s Pareto of Type I, Logistic, Burr, Cook-Johnsonâ s uniform, F and Inverted Beta. See Tapan Nayak (1987) <doi:10.2307/3214068>.
SCEPtER pipeline for estimating the stellar age for double-lined detached binary systems. The observational constraints adopted in the recovery are the effective temperature, the metallicity [Fe/H], the mass, and the radius of the two stars. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models.
This package provides a streamlined and user-friendly framework for simulating data in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. This package was designed to generate data for the simulations performed in Pesigan, Russell, and Chow (2025) <doi:10.1037/met0000779>.
The package performs a sensitivity analysis in an observational study using an M-statistic, for instance, the mean. The main function in the package is senmv(), but amplify() and truncatedP() are also useful. The method is developed in Rosenbaum Biometrics, 2007, 63, 456-464, <doi:10.1111/j.1541-0420.2006.00717.x>.
The r-und-s package decodes the german R- und S-Satze, which are numerically coded security advice for chemical substances into plain text. This is, e.g., used to compose security sheets or lab protocols and especially useful for students of chemistry. There are four packages, giving texts in German, English, French and Dutch.