Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for downloading, reading and analyzing the Continuous National Household Sample Survey - PNADC, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
Introducing a novel and updated database showcasing Peru's endemic plants. This meticulously compiled and revised botanical collection encompasses a remarkable assemblage of over 7,898 distinct species. The data for this resource was sourced from the work of Govaerts, R., Nic Lughadha, E., Black, N. et al., titled The World Checklist of Vascular Plants: A continuously updated resource for exploring global plant diversity', published in Sci Data 8, 215 (2021) <doi:10.1038/s41597-021-00997-6>.
An efficient tool designed for differential analysis of large-scale RNA sequencing (RNAseq) data and Bisulfite sequencing (BSseq) data in the presence of individual relatedness and population structure. PQLseq first fits a Generalized Linear Mixed Model (GLMM) with adjusted covariates, predictor of interest and random effects to account for population structure and individual relatedness, and then performs Wald tests for each gene in RNAseq or site in BSseq.
Data sets associated with modeling examples in Craig Starbuck's book, "The Fundamentals of People Analytics: With Applications in R".
Likelihood based population viability analysis in the presence of observation error and missing data. The package can be used to fit, compare, predict, and forecast various growth model types using data cloning.
In linear LS regression, calculate for a given design matrix the multiplier K of coefficient standard errors such that the confidence intervals [b - K*SE(b), b + K*SE(b)] have a guaranteed coverage probability for all coefficient estimates b in any submodels after performing arbitrary model selection.
Google Pathways Language Model 2 (PaLM 2) as a coding and writing assistant designed for R'. With a range of functions, including natural language processing and coding optimization, to assist R developers in simplifying tedious coding tasks and content searching.
Density, distribution function, quantile function and random generation for the family of power and reversal power distributions.
Enables direct cloud access to health care decision models hosted on the PRISM server of the Peer Models Network.
Implementation of the pattern recognition technique Principal Component Pursuit tailored to environmental health data, as described in Gibson et al (2022) <doi:10.1289/EHP10479>.
Sensitivity and power analysis, for calculating statistics describing pedigrees from wild populations, and for visualizing pedigrees.
This package provides a set of tools that enables efficient estimation of penalized Poisson Pseudo Maximum Likelihood regressions, using lasso or ridge penalties, for models that feature one or more sets of high-dimensional fixed effects. The methodology is based on Breinlich, Corradi, Rocha, Ruta, Santos Silva, and Zylkin (2021) <http://hdl.handle.net/10986/35451> and takes advantage of the method of alternating projections of Gaure (2013) <doi:10.1016/j.csda.2013.03.024> for dealing with HDFE, as well as the coordinate descent algorithm of Friedman, Hastie and Tibshirani (2010) <doi:10.18637/jss.v033.i01> for fitting lasso regressions. The package is also able to carry out cross-validation and to implement the plugin lasso of Belloni, Chernozhukov, Hansen and Kozbur (2016) <doi:10.1080/07350015.2015.1102733>.
This package provides functions that support a broad range of common tasks in physical activity research, including but not limited to creation of Bland-Altman plots (<doi:10.1136/bmj.313.7049.106>), metabolic calculations such as basal metabolic rate predictions (<https://europepmc.org/article/med/4044297/reloa>), demographic calculations such as age-for-body-mass-index percentile (<https://www.cdc.gov/growthcharts/cdc_charts.htm>), and analysis of bout detection algorithm performance (<https://pubmed.ncbi.nlm.nih.gov/34258524/>).
Computes nonparametric p-values for the potential class memberships of new observations as well as cross-validated p-values for the training data. The p-values are based on permutation tests applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, k nearest neighbors', weighted nearest neighbors or penalized logistic regression'. Additionally, it provides graphical displays and quantitative analyses of the p-values.
Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. This package implements the methodological framework, Point-process Response model for Optogenetics (PRO), for analyzing data from these experiments. This method provides explicit nonlinear transformations to link the flash point-process with the spiking point-process. Such response functions can be used to provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation.
This package provides functions to estimate the size-controlled phenotypic integration index, a novel method by Torices & Méndez (2014) <doi:10.1086/676622> to solve problems due to individual size when estimating integration (namely, larger individuals have larger components, which will drive a correlation between components only due to resource availability that might obscure the observed measures of integration). In addition, the package also provides the classical estimation by Wagner (1984) <doi:10.1007/BF00275224>, bootstrapping and jackknife methods to calculate confidence intervals and a significance test for both integration indices. Further details can be found in Torices & Muñoz-Pajares <doi:10.3732/apps.1400104>.
Generates a position balanced or nearly position balanced block design with given parameters. This package can also convert a given proper and equireplicate block design into a position balanced or nearly position balanced block design.
This package provides functions to calculate power and sample size for testing (1) mediation effects; (2) the slope in a simple linear regression; (3) odds ratio in a simple logistic regression; (4) mean change for longitudinal study with 2 time points; (5) interaction effect in 2-way ANOVA; and (6) the slope in a simple Poisson regression.
Estimation of univariate (conditional) densities using penalized B-splines with automatic selection of optimal smoothing parameter.
This package provides functions to fit point process models using the Palm likelihood. First proposed by Tanaka, Ogata, and Stoyan (2008) <DOI:10.1002/bimj.200610339>, maximisation of the Palm likelihood can provide computationally efficient parameter estimation for point process models in situations where the full likelihood is intractable. This package is chiefly focused on Neyman-Scott point processes, but can also fit the void processes proposed by Jones-Todd et al. (2019) <DOI:10.1002/sim.8046>. The development of this package was motivated by the analysis of capture-recapture surveys on which individuals cannot be identified---the data from which can conceptually be seen as a clustered point process (Stevenson, Borchers, and Fewster, 2019 <DOI:10.1111/biom.12983>). As such, some of the functions in this package are specifically for the estimation of cetacean density from two-camera aerial surveys.
This package provides tools to process legacy format summary redistricting data files produced by the United States Census Bureau pursuant to P.L. 94-171. These files are generally available earlier but are difficult to work with as-is.
This package provides a collection of functions and data sets that support teaching a quantitative finance MS level course on Portfolio Construction and Risk Analysis, and the writing of a textbook for such a course. The package is unique in providing several real-world data sets that may be used for problem assignments and student projects. The data sets include cross-sections of stock data from the Center for Research on Security Prices, LLC (CRSP), corresponding factor exposures data from S&P Global, and several SP500 data sets.
The Poverty Probability Index (PPI) is a poverty measurement tool for organizations and businesses with a mission to serve the poor. The PPI is statistically-sound, yet simple to use: the answers to 10 questions about a household's characteristics and asset ownership are scored to compute the likelihood that the household is living below the poverty line - or above by only a narrow margin. This package contains country-specific lookup data tables used as reference to determine the poverty likelihood of a household based on their score from the country-specific PPI questionnaire. These lookup tables have been extracted from documentation of the PPI found at <https://www.povertyindex.org> and managed by Innovations for Poverty Action <https://poverty-action.org/>.
This package provides a toolkit of functions to help: i) effortlessly transform collected data into a publication ready format, ii) generate insightful visualizations from clinical data, iii) report summary statistics in a publication-ready format, iv) efficiently export, save and reload R objects within the framework of R projects.