Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The perturbR() function incrementally perturbs network edges (using the rewireR function)and compares the resulting community detection solutions from the rewired networks with the solution found for the original network. These comparisons aid in understanding the stability of the original solution. The package requires symmetric, weighted (specifically, count) matrices/networks.
Portfolio optimization and analysis routines and graphics.
Makes it easy to build panel data in wide format from Panel Survey of Income Dynamics (PSID) delivered raw data. Downloads data directly from the PSID server using the SAScii package. psidR takes care of merging data from each wave onto a cross-period index file, so that individuals can be followed over time. The user must specify which years they are interested in, and the PSID variable names (e.g. ER21003) for each year (they differ in each year). The package offers helper functions to retrieve variable names from different waves. There are different panel data designs and sample subsetting criteria implemented ("SRC", "SEO", "immigrant" and "latino" samples). More information about the PSID can be obtained at <https://simba.isr.umich.edu/data/data.aspx>.
This package implements the method described at the UCLA Statistical Consulting site <https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/> for checking if the proportional odds assumption holds for a cumulative logit model.
This package provides an implementation of a rare variant association test that utilizes protein tertiary structure to increase signal and to identify likely causal variants. Performs structure-guided collapsing, which leads to local tests that borrow information from neighboring variants on a protein and that provide association information on a variant-specific level. For details of the implemented method see West, R. M., Lu, W., Rotroff, D. M., Kuenemann, M., Chang, S-M., Wagner M. J., Buse, J. B., Motsinger-Reif, A., Fourches, D., and Tzeng, J-Y. (2019) <doi:10.1371/journal.pcbi.1006722>.
This package provides functions and data sets for the text Probability and Statistics with R, Second Edition.
Calculation of Predictive Moran's eigenvector maps (pMEM), as defined by Guénard and Legendre (In Press) "Spatially-explicit predictions using spatial eigenvector maps" <doi:10.5281/zenodo.13356457>. Methods in Ecology and Evolution. This method enables scientists to predict the values of spatially-structured environmental variables. Multiple types of pMEM are defined, each one implemented on the basis of spatial weighting function taking a range parameter, and sometimes also a shape parameter. The code's modular nature enables programers to implement new pMEM by defining new spatial weighting functions.
Patient Rule Induction Method (PRIM) for bump hunting in high-dimensional data.
Estimates power, minimum detectable effect size (MDES) and sample size requirements. The context is multilevel randomized experiments with multiple outcomes. The estimation takes into account the use of multiple testing procedures. Development of this package was supported by a grant from the Institute of Education Sciences (R305D170030). For a full package description, including a detailed technical appendix, see <doi:10.18637/jss.v108.i06>.
Markov chain Monte Carlo diagnostic plots. The purpose of the package is to combine existing tools from the coda and lattice packages, and make it easy to adjust graphical details.
This package provides a collection of scripts and data files for the statistics text: "Process Improvement using Data" <https://learnche.org/pid> and the online course "Experimentation for Improvement" found on Coursera. The package contains code for designed experiments, data sets and other convenience functions used in the book.
Prediction limits for the Poisson distribution are produced from both frequentist and Bayesian viewpoints. Limiting results are provided in a Bayesian setting with uniform, Jeffreys and gamma as prior distributions. More details on the methodology are discussed in Bejleri and Nandram (2018) <doi:10.1080/03610926.2017.1373814> and Bejleri, Sartore and Nandram (2021) <doi:10.1007/s42952-021-00157-x>.
This package implements a partial linear semiparametric mixed-effects model (PLSMM) featuring a random intercept and applies a lasso penalty to both the fixed effects and the coefficients associated with the nonlinear function. The model also accommodates interactions between the nonlinear function and a grouping variable, allowing for the capture of group-specific nonlinearities. Nonlinear functions are modeled using a set of bases functions. Estimation is conducted using a penalized Expectation-Maximization algorithm, and the package offers flexibility in choosing between various information criteria for model selection. Post-selection inference is carried out using a debiasing method, while inference on the nonlinear functions employs a bootstrap approach.
This package implements the copula-based estimator for univariate long-range dependent processes, introduced in Pumi et al. (2023) <doi:10.1007/s00362-023-01418-z>. Notably, this estimator is capable of handling missing data and has been shown to perform exceptionally well, even when up to 70% of data is missing (as reported in <arXiv:2303.04754>) and has been found to outperform several other commonly applied estimators.
XKCD described a supposedly "bad" colormap that it called a "Painbow" (see <https://xkcd.com/2537/>). But simple tests demonstrate that under some circumstances, the colormap can perform very well, and people can find information that is difficult to detect with the ggplot2 default and even supposedly "good" colormaps like viridis. This library let's you use the Painbow in your own ggplot graphs.
This package implements projection pursuit forest algorithm for supervised classification.
To build a shiny app for visualization of the hierarchy of PheCode Mapping with International Classification of Diseases (ICD). The same PheCode hierarchy is displayed in two ways: as a sunburst plot and as a tree.
This package provides tools to import, clean, filter, and prepare Project FeederWatch data for analysis. Includes functions for taxonomic rollup, easy filtering, zerofilling, merging in site metadata, and more. Project FeederWatch data comes from <https://feederwatch.org/explore/raw-dataset-requests/>.
Design and implementation of Percentile-based Shewhart Control Charts for continuous data. Faraz (2019) <doi:10.1002/qre.2384>.
An alternative data structure and visual rendering for the profiling information generated by Rprof.
Supports maximum likelihood inference for the Pearson VII distribution with shape parameter 3/2 and free location and scale parameters. This distribution is relevant when estimating the velocity of processive motor proteins with random detachment.
This package performs sensitivity analysis for publication bias in meta-analyses (per Mathur & VanderWeele, 2020 [<doi:10.31219/osf.io/s9dp6>]). These analyses enable statements such as: "For publication bias to shift the observed point estimate to the null, significant results would need to be at least 30-fold more likely to be published than negative or nonsignificant results." Comparable statements can be made regarding shifting to a chosen non-null value or shifting the confidence interval. Provides a worst-case meta-analytic point estimate under maximal publication bias obtained simply by conducting a standard meta-analysis of only the negative and "nonsignificant" studies.
This package provides functions for calculating and analyzing the proliferative index (PI) from an RNA-seq dataset. As described in Ramaker & Lasseigne, et al. bioRxiv, 2016 <doi:10.1101/063057>.
Perform flexible and quick calculations for Demand and Supply Planning, such as projected inventories and coverages, as well as replenishment plan. For any time bucket, daily, weekly or monthly, and any granularity level, product or group of products.