Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Leading/lagging a panel, creating dummy variables, taking panel differences, looking for panel autocorrelations, and more. Implemented via a data.table back end.
This package provides tools for modelling populations and demography using matrix projection models, with deterministic and stochastic model implementations. Includes population projection, indices of short- and long-term population size and growth, perturbation analysis, convergence to stability or stationarity, and diagnostic and manipulation tools.
Applies phylogenetic comparative methods (PCM) and phylogenetic trait imputation using structural equation models (SEM), extending methods from Thorson et al. (2023) <doi:10.1111/2041-210X.14076>. This implementation includes a minimal set of features, to allow users to easily read all of the documentation and source code. PCM using SEM includes phylogenetic linear models and structural equation models as nested submodels, but also allows imputation of missing values. Features and comparison with other packages are described in Thorson and van der Bijl (2023) <doi:10.1111/jeb.14234>.
Fits the Piecewise Exponential distribution with random time grids using the clustering structure of the Product Partition Models. Details of the implemented model can be found in Demarqui et al. (2008) <doi:10.1007/s10985-008-9086-0>.
Set of tools to automatize extraction of data on pests from EPPO Data Services and EPPO Global Database and to put them into tables with human readable format. Those function use EPPO database API', thus you first need to register on <https://data.eppo.int> (free of charge). Additional helpers allow to download, check and connect to SQLite EPPO database'.
Looks for amino acid and/or nucleotide patterns and/or small ligands coordinated to a given prosthetic centre. Files have to be in the local file system and contain proper extension.
The Predictive Power Score (PPS) is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two variables. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). PPS can be useful for data exploration purposes, in the same way correlation analysis is. For more information on PPS, see <https://github.com/paulvanderlaken/ppsr>.
An implementation of data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of covariance matrices or spectral density matrices. The tools in this package can be used to perform: (i) intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices with applications to dimension reduction, denoising and clustering in the space of Hermitian positive definite matrices; and (ii) exploratory data analysis and inference for samples of positive definite matrices by means of intrinsic data depth functions and rank-based hypothesis tests in the space of Hermitian positive definite matrices.
This package provides an R interface to the PCATS API <https://pcats.research.cchmc.org/api/__docs__/>, allowing R users to submit tasks and retrieve results.
This package provides functions for simulating from and fitting the latent hidden Markov models for response process data (Tang, 2024) <doi:10.1007/s11336-023-09938-1>. It also includes functions for simulating from and fitting ordinary hidden Markov models.
Set of functions that implement the PoDBAY method, described in the publication A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data by Julie Dudasova, Regina Laube, Chandni Valiathan, Matthew C. Wiener, Ferdous Gheyas, Pavel Fiser, Justina Ivanauskaite, Frank Liu and Jeffrey R. Sachs (NPJ Vaccines, 2021), <doi:10.1038/s41541-021-00377-6>.
Kappa, ICC, reliability coefficient, parallel analysis, multi-traits multi-methods, spherical representation of a correlation matrix.
Reviews other packages during code review by looking at their dependencies, code style, code complexity, and how internally defined functions interact with one another.
This package provides functions that facilitate the elaboration of population pyramids.
Utilities for multiple hypothesis testing, companion datasets from "Probability and Statistics for Economics and Business: An Introduction Using R" by Jason Abrevaya (MIT Press, under contract).
This package provides a Boolean network is a particular kind of discrete dynamical system where the variables are simple binary switches. Despite its simplicity, Boolean network modeling has been a successful method to describe the behavioral pattern of various phenomena. Applying stochastic noise to Boolean networks is a useful approach for representing the effects of various perturbing stimuli on complex systems. A number of methods have been developed to control noise effects on Boolean networks using parameters integrated into the update rules. This package provides functions to examine three such methods: Boolean network with perturbations (BNp), described by Trairatphisan et al. (2013) <doi:10.1186/1478-811X-11-46>, stochastic discrete dynamical systems (SDDS), proposed by Murrugarra et al. (2012) <doi:10.1186/1687-4153-2012-5>, and Boolean network with probabilistic edge weights (PEW), presented by Deritei et al. (2022) <doi:10.1371/journal.pcbi.1010536>. This package includes source code derived from the BoolNet package, which is licensed under the Artistic License 2.0.
Loads and processes huge text corpora processed with the sally toolbox (<http://www.mlsec.org/sally/>). sally acts as a very fast preprocessor which splits the text files into tokens or n-grams. These output files can then be read with the PRISMA package which applies testing-based token selection and has some replicate-aware, highly tuned non-negative matrix factorization and principal component analysis implementation which allows the processing of very big data sets even on desktop machines.
This package provides a set of functions designed to calculate the standardised precipitation and standardised precipitation evapotranspiration indices using NASA POWER data as described in Blain et al. (2023) <doi:10.2139/ssrn.4442843>. These indices are calculated using a reference data source. The functions verify if the indices estimates meet the assumption of normality and how well NASA POWER estimates represent real-world data. Indices are calculated in a routine mode. Potential evapotranspiration amounts and the difference between rainfall and potential evapotranspiration are also calculated. The functions adopt a basic time scale that splits each month into four periods. Days 1 to 7, days 8 to 14, days 15 to 21, and days 22 to 28, 29, 30, or 31, where TS=4 corresponds to a 1-month length moving window (calculated 4 times per month) and TS=48 corresponds to a 12-month length moving window (calculated 4 times per month).
We innovatively defined a pathway mutation accumulate perturbation score (PMAPscore) to reflect the position and the cumulative effect of the genetic mutations at the pathway level. Based on the PMAPscore of pathways, identified prognosis-related pathways altered by somatic mutation and predict immunotherapy efficacy by constructing a multiple-pathway-based risk model (Tarca, Adi Laurentiu et al (2008) <doi:10.1093/bioinformatics/btn577>).
This package produces an Odds Ratio (OR) Plot to visualise the result of a logistic regression analysis. Provide it with a binomial regression model produced by glm() and it will convert the estimates to odds ratios with a 95% confidence interval and plot the results using ggplot2'.
Fast and Accurate Randomized Singular Value Decomposition (RSVD) methods proposed in the PCAone paper by Li (2023) <https://genome.cshlp.org/content/33/9/1599>.
This package provides a low-level package for hosting persistence data. It is part of the TDAverse suite of packages, which is designed to provide a collection of packages for enabling machine learning and data science tasks using persistent homology. Implements a class for hosting persistence data, a number of coercers from and to already existing and used data structures from other packages and functions to compute distances between persistence diagrams. A formal definition and study of bottleneck and Wasserstein distances can be found in Bubenik, Scott and Stanley (2023) <doi:10.1007/s41468-022-00103-8>. Their implementation in phutil relies on the C++ Hera library developed by Kerber, Morozov and Nigmetov (2017) <doi:10.1145/3064175>.
Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.
Tests periodicity in short time series using response surface regression.