Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of the Partitioned Local Depth (PaLD) approach which provides a measure of local depth and the cohesion of a point to another which (together with a universal threshold for distinguishing strong and weak ties) may be used to reveal local and global structure in data, based on methods described in Berenhaut, Moore, and Melvin (2022) <doi:10.1073/pnas.2003634119>. No extraneous inputs, distributional assumptions, iterative procedures nor optimization criteria are employed. This package includes functions for computing local depths and cohesion as well as flexible functions for plotting community networks and displays of cohesion against distance.
References and cites R and R packages on the fly in R Markdown and Quarto'. pakret provides a minimalist API that generates preformatted citations for R and R packages, and adds their references to a .bib file directly from within your document.
This package provides tools for phoneticians and phonologists, including functions for normalization and plotting of vowels.
This package implements estimation and testing procedures for evaluating an intermediate biomarker response as a principal surrogate of a clinical response to treatment (i.e., principal stratification effect modification analysis), as described in Juraska M, Huang Y, and Gilbert PB (2020), Inference on treatment effect modification by biomarker response in a three-phase sampling design, Biostatistics, 21(3): 545-560 <doi:10.1093/biostatistics/kxy074>. The methods avoid the restrictive placebo structural risk modeling assumption common to past methods and further improve robustness by the use of nonparametric kernel smoothing for biomarker density estimation. A randomized controlled two-group clinical efficacy trial is assumed with an ordered categorical or continuous univariate biomarker response measured at a fixed timepoint post-randomization and with a univariate baseline surrogate measure allowed to be observed in only a subset of trial participants with an observed biomarker response (see the flexible three-phase sampling design in the paper for details). Bootstrap-based procedures are available for pointwise and simultaneous confidence intervals and testing of four relevant hypotheses. Summary and plotting functions are provided for estimation results.
Compute bending energies, principal warps, partial warp scores, and the non-affine component of shape variation for 2D landmark configurations, as well as Mardia-Dryden distributions and self-similar distributions of landmarks, as described in Mitteroecker et al. (2020) <doi:10.1093/sysbio/syaa007>. Working examples to decompose shape variation into small-scale and large-scale components, and to decompose the total shape variation into outline and residual shape components are provided. Two landmark datasets are provided, that quantify skull morphology in humans and papionin primates, respectively from Mitteroecker et al. (2020) <doi:10.5061/dryad.j6q573n8s> and Grunstra et al. (2020) <doi:10.5061/dryad.zkh189373>.
An open-access tool/framework to download, validate, visualize, and analyze multi-source precipitation data. More information and an example of implementation can be found in Vargas Godoy and Markonis (2023, <doi:10.1016/j.envsoft.2023.105711>).
Supports propensity score weighting analysis of observational studies and randomized trials. Enables the estimation and inference of average causal effects with binary and multiple treatments using overlap weights (ATO), inverse probability of treatment weights (ATE), average treatment effect among the treated weights (ATT), matching weights (ATM) and entropy weights (ATEN), with and without propensity score trimming. These weights are members of the family of balancing weights introduced in Li, Morgan and Zaslavsky (2018) <doi:10.1080/01621459.2016.1260466> and Li and Li (2019) <doi:10.1214/19-AOAS1282>.
The calculation of p-variation of the finite sample data. This package is a realisation of the procedure described in Butkus, V. & Norvaisa, R. Lith Math J (2018). <doi: 10.1007/s10986-018-9414-3> The formal definitions and reference into literature are given in vignette.
This package provides functions for phenological data preprocessing, modelling and result handling. For more information, please refer to Lange et al. (2016) <doi:10.1007/s00484-016-1161-8>.
This package provides a lightweight, dependency-free, and simplified implementation of the Pseudo-Expectation Gauss-Seidel (PEGS) algorithm. It fits the multivariate ridge regression model for genomic prediction Xavier and Habier (2022) <doi:10.1186/s12711-022-00730-w> and Xavier et al. (2025) <doi:10.1093/genetics/iyae179>, providing heritability estimates, genetic correlations, breeding values, and regression coefficient estimates for prediction. This package provides an alternative to the bWGR package by Xavier et al. (2019) <doi:10.1093/bioinformatics/btz794> by using LAPACK for its algebraic operations.
This package provides functionality for calculating pregnancy-related dates and tracking medications during pregnancy and fertility treatment. Calculates due dates from various starting points including last menstrual period and IVF (In Vitro Fertilisation) transfer dates, determines pregnancy progress on any given date, and identifies when specific pregnancy weeks are reached. Includes medication tracking capabilities for individuals undergoing fertility treatment or during pregnancy, allowing users to monitor remaining doses and quantities needed over specified time periods. Designed for those tracking their own pregnancies or supporting partners through the process, making use of options to personalise output messages. For details on due date calculations, see <https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/05/methods-for-estimating-the-due-date>.
This package performs Bayesian arm-based network meta-analysis for datasets with binary, continuous, and count outcomes (Zhang et al., 2014 <doi:10.1177/1740774513498322>; Lin et al., 2017 <doi:10.18637/jss.v080.i05>).
Calculates profile repeatability for replicate stress response curves, or similar time-series data. Profile repeatability is an individual repeatability metric that uses the variances at each timepoint, the maximum variance, the number of crossings (lines that cross over each other), and the number of replicates to compute the repeatability score. For more information see Reed et al. (2019) <doi:10.1016/j.ygcen.2018.09.015>.
Check a data frame for personal information, including names, location, disability status, and geo-coordinates.
Inference and visualize gene regulatory network based on single-cell RNA sequencing pseudo-time information.
Bayesian dynamic borrowing is an approach to incorporating external data to supplement a randomized, controlled trial analysis in which external data are incorporated in a dynamic way (e.g., based on similarity of outcomes); see Viele 2013 <doi:10.1002/pst.1589> for an overview. This package implements the hierarchical commensurate prior approach to dynamic borrowing as described in Hobbes 2011 <doi:10.1111/j.1541-0420.2011.01564.x>. There are three main functionalities. First, psborrow2 provides a user-friendly interface for applying dynamic borrowing on the study results handles the Markov Chain Monte Carlo sampling on behalf of the user. Second, psborrow2 provides a simulation framework to compare different borrowing parameters (e.g. full borrowing, no borrowing, dynamic borrowing) and other trial and borrowing characteristics (e.g. sample size, covariates) in a unified way. Third, psborrow2 provides a set of functions to generate data for simulation studies, and also allows the user to specify their own data generation process. This package is designed to use the sampling functions from cmdstanr which can be installed from <https://stan-dev.r-universe.dev>.
This package performs partial principal component analysis of a large sparse matrix. The matrix may be stored as a list of matrices to be concatenated (implicitly) horizontally. Useful application includes cases where the number of total nonzero entries exceed the capacity of 32 bit integers (e.g., with large Single Nucleotide Polymorphism data).
This package provides functionality to support data preparation and exploration for palaeobiological analyses, improving code reproducibility and accessibility. The wider aim of palaeoverse is to bring the palaeobiological community together to establish agreed standards. The package currently includes functionality for data cleaning, binning (time and space), exploration, summarisation and visualisation. Reference datasets (i.e. Geological Time Scales <https://stratigraphy.org/chart>) and auxiliary functions are also provided. Details can be found in: Jones et al., (2023) <doi: 10.1111/2041-210X.14099>.
This package provides functions for conventionally formatting descriptive stats, reshaping data frames and formatting R output as HTML.
Computes the minimum sample size required for the development of a new multivariable prediction model using the criteria proposed by Riley et al. (2018) <doi: 10.1002/sim.7992>. pmsampsize can be used to calculate the minimum sample size for the development of models with continuous, binary or survival (time-to-event) outcomes. Riley et al. (2018) <doi: 10.1002/sim.7992> lay out a series of criteria the sample size should meet. These aim to minimise the overfitting and to ensure precise estimation of key parameters in the prediction model.
Most of the time floating point arithmetic does approximately the right thing. When adding sums or having products of numbers that greatly differ in magnitude, the floating point arithmetic may be incorrect. This package implements the Kahan (1965) sum <doi:10.1145/363707.363723>, Neumaier (1974) sum <doi:10.1002/zamm.19740540106>, pairwise-sum (adapted from NumPy', See Castaldo (2008) <doi:10.1137/070679946> for a discussion of accuracy), and arbitrary precision sum (adapted from the fsum in Python ; Shewchuk (1997) <https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf>). In addition, products are changed to long double precision for accuracy, or changed into a log-sum for accuracy.
Presentation of distributions such as: two-piece power normal (TPPN), plasticizing component (PC), DS normal (DSN), expnormal (EN), Sulewski plasticizing component (SPC), easily changeable kurtosis (ECK) distributions. Density, distribution function, quantile function and random generation are presented. For details on this method see: Sulewski (2019) <doi:10.1080/03610926.2019.1674871>, Sulewski (2021) <doi:10.1080/03610926.2020.1837881>, Sulewski (2021) <doi:10.1134/S1995080221120337>, Sulewski (2022) <"New members of the Johnson family of probability dis-tributions: properties and application">, Sulewski, Volodin (2022) <doi:10.1134/S1995080222110270>, Sulewski (2023) <doi:10.17713/ajs.v52i3.1434>.
Useful set of tools for plotting network diagrams in any kind of project.
Optimization of conditional inference trees from the package party for classification and regression. For optimization, the model space is searched for the best tree on the full sample by means of repeated subsampling. Restrictions are allowed so that only trees are accepted which do not include pre-specified uninterpretable split results (cf. Weihs & Buschfeld, 2021a). The function PrInDT() represents the basic resampling loop for 2-class classification (cf. Weihs & Buschfeld, 2021a). The function RePrInDT() (repeated PrInDT()) allows for repeated applications of PrInDT() for different percentages of the observations of the large and the small classes (cf. Weihs & Buschfeld, 2021c). The function NesPrInDT() (nested PrInDT()) allows for an extra layer of subsampling for a specific factor variable (cf. Weihs & Buschfeld, 2021b). The functions PrInDTMulev() and PrInDTMulab() deal with multilevel and multilabel classification. In addition to these PrInDT() variants for classification, the function PrInDTreg() has been developed for regression problems. Finally, the function PostPrInDT() allows for a posterior analysis of the distribution of a specified variable in the terminal nodes of a given tree. In version 2, additionally structured sampling is implemented in functions PrInDTCstruc() and PrInDTRstruc(). In these functions, repeated measurements data can be analyzed, too. Moreover, multilabel 2-stage versions of classification and regression trees are implemented in functions C2SPrInDT() and R2SPrInDT() as well as interdependent multilabel models in functions SimCPrInDT() and SimRPrInDT(). Finally, for mixtures of classification and regression models functions Mix2SPrInDT() and SimMixPrInDT() are implemented. Most of these extensions of PrInDT are described in Buschfeld & Weihs (2025Fc). References: -- Buschfeld, S., Weihs, C. (2025Fc) "Optimizing decision trees for the analysis of World Englishes and sociolinguistic data", Cambridge Elements. -- Weihs, C., Buschfeld, S. (2021a) "Combining Prediction and Interpretation in Decision Trees (PrInDT) - a Linguistic Example" <doi:10.48550/arXiv.2103.02336>; -- Weihs, C., Buschfeld, S. (2021b) "NesPrInDT: Nested undersampling in PrInDT" <doi:10.48550/arXiv.2103.14931>; -- Weihs, C., Buschfeld, S. (2021c) "Repeated undersampling in PrInDT (RePrInDT): Variation in undersampling and prediction, and ranking of predictors in ensembles" <doi:10.48550/arXiv.2108.05129>.