Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An R interface to pikchr (<https://pikchr.org>, pronounced â pictureâ ), a PIC'-like markup language for creating diagrams within technical documentation. Originally developed by Brian Kernighan, PIC has been adapted into pikchr by D. Richard Hipp, the creator of SQLite'. pikchr is designed to be embedded in fenced code blocks of Markdown or other documentation markup languages, making it ideal for generating diagrams in text-based formats. This package allows R users to seamlessly integrate the descriptive syntax of pikchr for diagram creation directly within the R environment.
Extends ggplot2 to help replace points in a scatter plot with pie-chart glyphs showing the relative proportions of different categories. The pie glyphs are independent of the axes and plot dimensions, to prevent distortions when the plot dimensions are changed.
Implementation of the semi-parametric proportional-hazards (PH) of Sy and Taylor (2000) <doi:10.1111/j.0006-341X.2000.00227.x> extended to time-varying covariates. Estimation and variable selection are based on the methodology described in Beretta and Heuchenne (2019) <doi:10.1080/02664763.2018.1554627>; confidence intervals of the parameter estimates may be computed using a bootstrap approach. Moreover, data following the PH cure model may be simulated using a method similar to Hendry (2014) <doi:10.1002/sim.5945>, where the event-times are generated on a continuous scale from a piecewise exponential distribution conditional on time-varying covariates.
Post-selection inference in linear regression models, constructing simultaneous confidence intervals across a user-specified universe of models. Implements the methodology described in Kuchibhotla, Kolassa, and Kuffner (2022) "Post-Selection Inference" <doi:10.1146/annurev-statistics-100421-044639> to ensure valid inference after model selection, with applications in high-dimensional settings like Lasso selection.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey 2014 Household Listing questionnaire data for Punjab, Pakistan.
Create a word cloud using the abstract of publications from Pubmed'.
Principal component of explained variance (PCEV) is a statistical tool for the analysis of a multivariate response vector. It is a dimension- reduction technique, similar to Principal component analysis (PCA), that seeks to maximize the proportion of variance (in the response vector) being explained by a set of covariates.
An implementation of a formal grammar and parser for R Markdown documents using the Boost Spirit X3 library. It also includes a collection of high level functions for working with the resulting abstract syntax tree.
Drawing population pyramid using (1) data.frame or (2) vectors. The former is named as pyramid() and the latter pyramids(), as wrapper function of pyramid(). pyramidf() is the function to draw population pyramid within the specified frame.
Improving graphics by ameliorating order effects, using Eulerian tours and Hamiltonian decompositions of graphs. References for the methods presented here are C.B. Hurley and R.W. Oldford (2010) <doi:10.1198/jcgs.2010.09136> and C.B. Hurley and R.W. Oldford (2011) <doi:10.1007/s00180-011-0229-5>.
Implementation of commonly used penalized functional linear regression models, including the Smooth and Locally Sparse (SLoS) method by Lin et al. (2016) <doi:10.1080/10618600.2016.1195273>, Nested Group bridge Regression (NGR) method by Guan et al. (2020) <doi:10.1080/10618600.2020.1713797>, Functional Linear Regression That's interpretable (FLIRTI) by James et al. (2009) <doi:10.1214/08-AOS641>, and the Penalized B-spline regression method.
Fast functions for dealing with prime numbers, such as testing whether a number is prime and generating a sequence prime numbers. Additional functions include finding prime factors and Ruth-Aaron pairs, finding next and previous prime numbers in the series, finding or estimating the nth prime, estimating the number of primes less than or equal to an arbitrary number, computing primorials, prime k-tuples (e.g., twin primes), finding the greatest common divisor and smallest (least) common multiple, testing whether two numbers are coprime, and computing Euler's totient function. Most functions are vectorized for speed and convenience.
Simulate the dynamic of wolf populations using a specific Individual-Based Model (IBM) compiled in C, see Chapron et al. (2016) <doi:10.1016/j.ecolmodel.2016.08.012>.
Enables user to perform the following: 1. Roll n number of die/dice (roll()). 2. Toss n number of coin(s) (toss()). 3. Play the game of Rock, Paper, Scissors. 4. Choose n number of card(s) from a pack of 52 playing cards (Joker optional).
Kernel density estimation on the polysphere, (hyper)sphere, and circle. Includes functions for density estimation, regression estimation, ridge estimation, bandwidth selection, kernels, samplers, and homogeneity tests. Companion package to Garcà a-Portugués and Meilán-Vila (2025) <doi:10.1080/01621459.2025.2521898> and Garcà a-Portugués and Meilán-Vila (2023) <doi:10.1007/978-3-031-32729-2_4>.
Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".
Manipulation and analysis of phylogenetically simulated data sets and phylogenetically based analyses using GLS.
Bivariate additive categorical regression via penalized maximum likelihood. Under a multinomial framework, the method fits bivariate models where both responses are nominal, ordinal, or a mix of the two. Partial proportional odds models are supported, with flexible (non-)uniform association structures. Various logit types and parametrizations can be specified for both marginals and the association, including Daleâ s model. The association structure can be regularized using polynomial-type penalty terms. Additive effects are modeled using P-splines. Standard methods such as summary(), residuals(), and predict() are available.
Examines the characteristics of a data frame and a formula to automatically choose the most suitable type of plot out of the following supported options: scatter, violin, box, bar, density, hexagon bin, spine plot, and heat map. The aim of the package is to let the user focus on what to plot, rather than on the "how" during exploratory data analysis. It also automates handling of observation weights, logarithmic axis scaling, reordering of factor levels, and overlaying smoothing curves and median lines. Plots are drawn using ggplot2'.
Games that can be played in the R console. Includes coin flip, hangman, jumble, magic 8 ball, poker, rock paper scissors, shut the box, spelling bee, and 2048.
This package provides a parallel estimation method for generalized linear models without compiling with a multithreaded LAPACK or BLAS.
This package provides tools for statistical testing of correlation coefficients through robust permutation method and large sample approximation method. Tailored to different types of correlation coefficients including Pearson correlation coefficient, weighted Pearson correlation coefficient, Spearman correlation coefficient, and Lin's concordance correlation coefficient.The robust permutation test controls type I error under general scenarios when sample size is small and two variables are dependent but uncorrelated. The large sample approximation test generally controls type I error when the sample size is large (>200).
Calculates the amplification efficiency and curves from real-time quantitative PCR (Polymerase Chain Reaction) data. Estimates the relative expression from PCR data using the double delta CT and the standard curve methods Livak & Schmittgen (2001) <doi:10.1006/meth.2001.1262>. Tests for statistical significance using two-group tests and linear regression Yuan et al. (2006) <doi: 10.1186/1471-2105-7-85>.
This package provides functions to easily convert data to binary formats other programs/machines can understand.