Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.
This package automates analysis workflow for Thermal Shift Analysis (TSA) data. Processing, analyzing, and visualizing data through both shiny applications and command lines. Package aims to simplify data analysis and offer front to end workflow, from raw data to multiple trial analysis.
This package provides several methods for performing permutation tests. It has three main functions, to perform linear permutation tests. These tests are tests where the test statistic is the sum of the product of a covariate (usually group indicator) and the scores.
This package lets you calculate power for generalized linear mixed models, using simulation. It was designed to work with models fit using the lme4
package. The package is described in Green and MacLeod (2016).
This package provides functions to model and decompose time series into principal components using singular spectrum analysis (de Carvalho and Rua (2017) <doi:10.1016/j.ijforecast.2015.09.004>; de Carvalho et al (2012) <doi:10.1016/j.econlet.2011.09.007>).
Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Fits a discharge rating curve based on the power-law and the generalized power-law from data on paired stage and discharge measurements in a given river using a Bayesian hierarchical model as described in Hrafnkelsson et al. (2020) <arXiv:2010.04769>
.
Calculates the necessary quantities to perform Bayesian multigroup equivalence testing. Currently the package includes the Bayesian models and equivalence criteria outlined in Pourmohamad and Lee (2023) <doi:10.1002/sta4.645>, but more models and equivalence testing features may be added over time.
Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.
Composite Kernel Association Test (CKAT) is a flexible and robust kernel machine based approach to jointly test the genetic main effect and gene-treatment interaction effect for a set of single-nucleotide polymorphisms (SNPs) in pharmacogenetics (PGx) assessments embedded within randomized clinical trials.
This package implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) <DOI:10.5705/ss.202016.0403> for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See <http://www.matthewpratola.com/software> for more information and examples.
This package provides a time series usually does not have a uniform growth rate. Compound Annual Growth Rate measures the average annual growth over a given period. More details can be found in Bardhan et al. (2022) <DOI:10.18805/ag.D-5418>.
This package provides functions and an example dataset for the psychometric theory of knowledge spaces. This package implements data analysis methods and procedures for simulating data and quasi orders and transforming different formulations in knowledge space theory. See package?DAKS for an overview.
Implementation of different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data. It serves to compute empirical cumulative distributions and also kernel density and hazard functions using different bandwidth selectors. Several real data sets are included.
This package provides simple, fast, and stable functions to fit the normal means model using empirical Bayes. For available models and details, see function ebnm()
. A detailed introduction to the package is provided by Willwerscheid and Stephens (2021) <arXiv:2110.00152>
.
Extended and enhanced hierarchical logistic regression models (called Huisman-Olff-Fresco in biology, see Huisman et al. 1993 Journal of Vegetation Science <doi:10.1111/jvs.12050>) models. Response curves along one-dimensional gradients including no response, monotone, plateau, unimodal and bimodal models.
This package provides a group-specific recommendation system to use dependency information from users and items which share similar characteristics under the singular value decomposition framework. Refer to paper A Group-Specific Recommender System <doi:10.1080/01621459.2016.1219261> for the details.
Calculate AIC's and AICc's of unimodal model (one normal distribution) and bimodal model(a mixture of two normal distributions) which fit the distribution of indices of asymmetry (IAS), and plot their density, to help determine IAS distribution is unimodal or bimodal.
This package performs likelihood criterion analysis using the Laplace regression model to determine its optimal subset of variables. The methodology is based on Guo et al. (2023), LIC criterion for optimal subset selection in distributed interval estimation <doi:10.1080/02331888.2020.1823979>.
This package provides functions to calculate hazard and survival function of Multi-Stage Clonal Expansion Models used in cancer epidemiology. For the Two-Stage Clonal Expansion Model an exact solution is implemented assuming piecewise constant parameters. Numerical solutions are provided for its extensions.
This package provides tools for non-parametric Fourier deconvolution using the N-Power Fourier Deconvolution (NPFD) method. This package includes methods for density estimation (densprf()
) and sample generation (createSample()
), enabling users to perform statistical analyses on mixed or replicated data sets.
This package implements projected sparse Gaussian process Kriging (Ingram et. al.', 2008, <doi:10.1007/s00477-007-0163-9>) as an additional method for the intamap package. More details on implementation (Barillec et. al.', 2010, <doi:10.1016/j.cageo.2010.05.008>).
The letters qe in the package title stand for "quick and easy," alluding to the convenience goal of the package. We bring together a variety of machine learning (ML) tools from standard R packages, providing wrappers with a simple, convenient, and uniform interface.