Bayesian fitting and sensitivity analysis methods for adaptive spline surfaces described in <doi:10.18637/jss.v094.i08>. Built to handle continuous and categorical inputs as well as functional or scalar output. An extension of the methodology in Denison, Mallick and Smith (1998) <doi:10.1023/A:1008824606259>.
Density, distribution function, quantile function random generation and estimation of bimodal GEV distribution given in Otiniano et al. (2023) <doi:10.1007/s10651-023-00566-7>. This new generalization of the well-known GEV (Generalized Extreme Value) distribution is useful for modeling heterogeneous bimodal data from different areas.
This package implements the combined cluster and discriminant analysis method for finding homogeneous groups of data with known origin as described in Kovacs et. al (2014): Classification into homogeneous groups using combined cluster and discriminant analysis (CCDA). Environmental Modelling & Software. <doi:10.1016/j.envsoft.2014.01.010>.
The issue of overlapping regions in multidimensional data arises when different classes or clusters share similar feature representations, making it challenging to delineate distinct boundaries between them accurately. This package provides methods for detecting and visualizing these overlapping regions using partitional clustering techniques based on nearest neighbor distances.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <https://OTexts.com/fpp3/>. All packages required to run the examples are also loaded. Additional data sets not used in the book are also included.
Fits geographically weighted regression (GWR) models and has tools to diagnose and remediate collinearity in the GWR models. Also fits geographically weighted ridge regression (GWRR) and geographically weighted lasso (GWL) models. See Wheeler (2009) <doi:10.1068/a40256> and Wheeler (2007) <doi:10.1068/a38325> for more details.
Implementation of S4 class of sets and multisets of numbers. The implementation is based on the hash table from the package hash'. Quick operations are allowed when the set is a dynamic object. The implementation is discussed in detail in Ceoldo and Wit (2023) <arXiv:2304.09809>
.
This is a collection of functions for converting coordinates between WGS84UTM, WGS84GEO, HK80UTM, HK80GEO and HK1980GRID Coordinate Systems used in Hong Kong SAR, based on the algorithms described in Explanatory Notes on Geodetic Datums in Hong Kong by Survey and Mapping Office Lands Department, Hong Kong Government (1995).
This package provides a function to calculate infinite-jackknife-based standard errors for fixed effects parameters in brms models, handling both clustered and independent data. References: Ji et al. (2024) <doi:10.48550/arXiv.2407.09772>
; Giordano et al. (2024) <doi:10.48550/arXiv.2305.06466>
.
The multivariate regression association measure quantifies the predictability of one random vector from another. This package provides a function for estimating and performing inference on this measure. A variable selection algorithm based on this measure is also included. For more details, see Shih and Chen (2025) <in revision>.
To perform main effect matrix factor model (MEFM) estimation for a given matrix time series as described in Lam and Cen (2024) <doi:10.48550/arXiv.2406.00128>
. Estimation of traditional matrix factor models is also supported. Supplementary functions for testing MEFM over factor models are included.
Perform multi-trait rare-variant association tests using the summary statistics and adjust for possible sample overlap. Package is based on "Multi-Trait Analysis of Rare-Variant Association Summary Statistics using MTAR" by Luo, L., Shen, J., Zhang, H., Chhibber, A. Mehrotra, D.V., Tang, Z., 2019 (submitted).
Subsampling based variable selection for low dimensional generalized linear models. The methods repeatedly subsample the data minimizing an information criterion (AIC/BIC) over a sequence of nested models for each subsample. Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models.
Publish data sets, models, and other R objects, making it easy to share them across projects and with your colleagues. You can pin objects to a variety of "boards", including local folders (to share on a networked drive or with DropBox
'), Posit Connect', AWS S3', and more.
In linear LS regression, calculate for a given design matrix the multiplier K of coefficient standard errors such that the confidence intervals [b - K*SE(b), b + K*SE(b)] have a guaranteed coverage probability for all coefficient estimates b in any submodels after performing arbitrary model selection.
Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.
This package implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <arXiv:2212.08697>
.
Covers k-table control analysis using multivariate control charts for qualitative variables using fundamentals of multiple correspondence analysis and multiple factor analysis. The graphs can be shown in a flat or interactive way, in the same way all the outputs can be shown in an interactive shiny panel.
This package provides methods for faster extraction (about 5x faster in a few test cases) of variance-covariance matrices and standard errors from models. Methods in the stats package tend to rely on the summary method, which may waste time computing other summary statistics which are summarily ignored.
MIME types are shorthand descriptors for file contents and can be determined from "magic" bytes in file headers, file contents or intuited from file extensions. Tools are provided to perform curated "magic" tests as well as mapping MIME types from a database of over 1,500 extension mappings.
Lossless webp images are 26% smaller in size compared to PNG. Lossy webp images are 25-34% smaller in size compared to JPEG. This package reads and writes webp images into a 3 (rgb) or 4 (rgba) channel bitmap array using conventions from the jpeg and png packages.
This package contains an implementation of AIMS
-- Absolute Intrinsic Molecular Subtyping. It contains necessary functions to assign the five intrinsic molecular subtypes (Luminal A, Luminal B, Her2-enriched, Basal-like, Normal-like). Assignments could be done on individual samples as well as on dataset of gene expression data.
This package implements five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang, respectively, for measuring semantic similarities among Disease ontology (DO) terms and gene products. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented for discovering disease associations of high-throughput biological data.
Remind allows you to remind yourself of upcoming events and appointments. Each reminder or alarm can consist of a message sent to standard output, or a program to be executed. It also features: sophisticated date calculation, moon phases, sunrise/sunset, Hebrew calendar, alarms, PostScript output and proper handling of holidays.