Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates unsupervised outlier probabilities for multivariate numeric data with many observations from a nonparametric outlier statistic.
Evaluates the strength of a surrogate marker by estimating the proportion of treatment effect explained (PTE) and relative power(RP) for the optimally-transformed version of the surrogate. Details available in Wang et al (2022) <arXiv:2209.08414>.
Bundles the datasets and functions used in the textbook by Philip Pollock and Barry Edwards, an R Companion to Essentials of Political Analysis, Second Edition.
It estimates the parameters of a partially linear regression censored model via maximum penalized likelihood through of ECME algorithm. The model belong to the semiparametric class, that including a parametric and nonparametric component. The error term considered belongs to the scale-mixture of normal (SMN) distribution, that includes well-known heavy tails distributions as the Student-t distribution, among others. To examine the performance of the fitted model, case-deletion and local influence techniques are provided to show its robust aspect against outlying and influential observations. This work is based in Ferreira, C. S., & Paula, G. A. (2017) <doi:10.1080/02664763.2016.1267124> but considering the SMN family.
This package provides beginner friendly framework to analyse population genetic data. Based on adegenet objects it uses knitr to create comprehensive reports on spatial genetic data. For detailed information how to use the package refer to the comprehensive tutorials or visit <http://www.popgenreport.org/>.
This package provides data set and functions for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Child questionnaire data for Punjab, Pakistan (<http://www.mics.unicef.org/surveys>).
The Penn World Table 10.x (<https://www.rug.nl/ggdc/productivity/pwt/>) provides information on relative levels of income, output, input, and productivity for 183 countries between 1950 and 2019.
This package implements the American Heart Association Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations from Khan SS, Matsushita K, Sang Y, and colleagues (2023) <doi:10.1161/CIRCULATIONAHA.123.067626>, with optional comparison with their de facto predecessor, the Pooled Cohort Equations from the American Heart Association and American College of Cardiology (2013) <doi:10.1161/01.cir.0000437741.48606.98> and the revision to the Pooled Cohort Equations from Yadlowsky and colleagues (2018) <doi:10.7326/M17-3011>.
This wrapper houses PathLit API endpoints for R. The usage of these endpoints require the use of an API key which can be obtained at <https://www.pathlit.io/docs/cli/>.
Tests periodicity in short time series using response surface regression.
This package provides functions to process, format and store ActiGraph GT1M and GT3X accelerometer data.
This package provides an implementation of piecewise normalisation techniques useful when dealing with the communication of skewed and highly skewed data. It also provides utilities that recommends a normalisation technique based on the distribution of the data.
This package provides an implementation of a rare variant association test that utilizes protein tertiary structure to increase signal and to identify likely causal variants. Performs structure-guided collapsing, which leads to local tests that borrow information from neighboring variants on a protein and that provide association information on a variant-specific level. For details of the implemented method see West, R. M., Lu, W., Rotroff, D. M., Kuenemann, M., Chang, S-M., Wagner M. J., Buse, J. B., Motsinger-Reif, A., Fourches, D., and Tzeng, J-Y. (2019) <doi:10.1371/journal.pcbi.1006722>.
Prism <https://prismjs.com/> is a lightweight, extensible syntax highlighter, built with modern web standards in mind. This package provides server-side rendering in R using V8 such that no JavaScript library is required in the resulting HTML documents. Over 400 languages are supported.
Design and analyze two-stage randomized trials with a continuous outcome measure. The package contains functions to compute the required sample size needed to detect a given preference, treatment, and selection effect; alternatively, the package contains functions that can report the study power given a fixed sample size. Finally, analysis functions are provided to test each effect using either summary data (i.e. means, variances) or raw study data <doi:10.18637/jss.v094.c02>.
The Proton Game is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. You have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. The knowledge of dplyr is not required but may be very helpful. This game is linked with the ,,Pietraszko's Cave story available at http://biecek.pl/BetaBit/Warsaw. It's a part of Beta and Bit series. You will find more about the Beta and Bit series at http://biecek.pl/BetaBit.
It aggregates protein panel data and metadata for protein quantitative trait locus (pQTL) analysis using pQTLtools (<https://jinghuazhao.github.io/pQTLtools/>). The package includes data from affinity-based panels such as Olink (<https://olink.com/>) and SomaScan (<https://somalogic.com/>), as well as mass spectrometry-based panels from CellCarta (<https://cellcarta.com/>) and Seer (<https://seer.bio/>). The metadata encompasses updated annotations and publication details.
This package provides functions for reading, and in some cases writing, foreign files containing spectral data from spectrometers and their associated software, output from daylight simulation models in common use, and some spectral data repositories. As well as functions for exchange of spectral data with other R packages. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
Allows for nonparametric regression where one assumes that the signal is given by the sum of a piecewise constant function and a smooth function. More precisely, it implements the estimator PCpluS (piecewise constant plus smooth regression estimator) from Pein and Shah (2025) <doi:10.48550/arXiv.2112.03878>.
Perform tasks commonly encountered when preparing and analysing demographic data. Some functions are intended for end users, and others for developers. Includes functions for working with life tables.
Improving graphics by ameliorating order effects, using Eulerian tours and Hamiltonian decompositions of graphs. References for the methods presented here are C.B. Hurley and R.W. Oldford (2010) <doi:10.1198/jcgs.2010.09136> and C.B. Hurley and R.W. Oldford (2011) <doi:10.1007/s00180-011-0229-5>.
Given a sample with additive measurement error, the package estimates the deconvolution density - that is, the density of the underlying distribution of the sample without measurement error. The method maximises the log-likelihood of the estimated density, plus a quadratic smoothness penalty. The distribution of the measurement error can be either a known family, or can be estimated from a "pure error" sample. For known error distributions, the package supports Normal, Laplace or Beta distributed error. For unknown error distribution, a pure error sample independent from the data is used.
There are a lot of different typical tasks that have to be solved during phonetic research and experiments. This includes creating a presentation that will contain all stimuli, renaming and concatenating multiple sound files recorded during a session, automatic annotation in Praat TextGrids (this is one of the sound annotation standards provided by Praat software, see Boersma & Weenink 2020 <https://www.fon.hum.uva.nl/praat/>), creating an html table with annotations and spectrograms, and converting multiple formats ('Praat TextGrid, ELAN', EXMARaLDA', Audacity', subtitles .srt', and FLEx flextext). All of these tasks can be solved by a mixture of different tools (any programming language has programs for automatic renaming, and Praat contains scripts for concatenating and renaming files, etc.). phonfieldwork provides a functionality that will make it easier to solve those tasks independently of any additional tools. You can also compare the functionality with other packages: rPraat <https://CRAN.R-project.org/package=rPraat>, textgRid <https://CRAN.R-project.org/package=textgRid>.
Using Electronic Health Record (EHR) is difficult because most of the time the true characteristic of the patient is not available. Instead we can retrieve the International Classification of Disease code related to the disease of interest or we can count the occurrence of the Unified Medical Language System. None of them is the true phenotype which needs chart review to identify. However chart review is time consuming and costly. PheVis is an algorithm which is phenotyping (i.e identify a characteristic) at the visit level in an unsupervised fashion. It can be used for chronic or acute diseases. An example of how to use PheVis is available in the vignette. Basically there are two functions that are to be used: `train_phevis()` which trains the algorithm and `test_phevis()` which get the predicted probabilities. The detailed method is described in preprint by Ferté et al. (2020) <doi:10.1101/2020.06.15.20131458>.