Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates (and controls for) phylogenetic signal through phylogenetic eigenvectors regression (PVR) and phylogenetic signal-representation (PSR) curve, along with some plot utilities.
This package provides a robust framework for analyzing the extent to which differential survival with respect to higher level trait variation is reducible to lower level variation. In addition to its primary test, it also provides functions for simulation-based power analysis, reading in common data set formats, and visualizing results. Temporarily contains an edited version of function hr.mcp() from package wild1', written by Glen Sargeant. For tutorial see: http://evolve.zoo.ox.ac.uk/Evolve/Perspectev.html.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household.
Useful set of tools for plotting network diagrams in any kind of project.
There are two main functions: (1) To estimate the power of testing for linkage using an affected sib pair design, as a function of the recurrence risk ratios. We will use analytical power formulae as implemented in R. These are based on a Mathematica notebook created by Martin Farrall. (2) To examine how the power of the transmission disequilibrium test (TDT) depends on the disease allele frequency, the marker allele frequency, the strength of the linkage disequilibrium, and the magnitude of the genetic effect. We will use an R program that implements the power formulae of Abel and Muller-Myhsok (1998). These formulae allow one to quickly compute power of the TDT approach under a variety of different conditions. This R program was modeled on Martin Farrall's Mathematica notebook.
This package provides functions for bootstrapping the power of ANOVA designs based on estimated means and standard deviations of the conditions. Please refer to the documentation of the boot.power.anova() function for further details.
Applying the global sensitivity analysis workflow to investigate the parameter uncertainty and sensitivity in physiologically based kinetic (PK) models, especially the physiologically based pharmacokinetic/toxicokinetic model with multivariate outputs. The package also provides some functions to check the convergence and sensitivity of model parameters. The workflow was first mentioned in Hsieh et al., (2018) <doi:10.3389/fphar.2018.00588>, then further refined (Hsieh et al., 2020 <doi:10.1016/j.softx.2020.100609>).
This package provides tools from the domain of graph theory can be used to quantify the complexity and vulnerability to failure of a software package. That is the guiding philosophy of this package. pkgnet provides tools to analyze the dependencies between functions in an R package and between its imported packages. See the pkgnet website for vignettes and other supplementary information.
Conservation planning datasets for learning how to use the prioritizr package <https://CRAN.R-project.org/package=prioritizr>.
Most price indexes are made with a two-step procedure, where period-over-period elementary indexes are first calculated for a collection of elementary aggregates at each point in time, and then aggregated according to a price index aggregation structure. These indexes can then be chained together to form a time series that gives the evolution of prices with respect to a fixed base period. This package contains a collection of functions that revolve around this work flow, making it easy to build standard price indexes, and implement the methods described by Balk (2008, <doi:10.1017/CBO9780511720758>), von der Lippe (2007, <doi:10.3726/978-3-653-01120-3>), and the CPI manual (2020, <doi:10.5089/9781484354841.069>) for bilateral price indexes.
Perform classic chi-squared tests and Ripol et al(1999) binomial confidence interval approach for autopolyploid dominant markers. Also, dominant markers may be generated for families of offspring where either one or both of the parents possess the marker. Missing values and misclassified markers may be generated at random.
Allows users to access the Oregon State Prism climate data (<https://prism.nacse.org/>). Using the web service API data can easily downloaded in bulk and loaded into R for spatial analysis. Some user friendly visualizations are also provided.
Create a project directory structure, along with typical files for that project. This allows projects to be quickly and easily created, as well as for them to be standardized. Designed specifically with scientists in mind (mainly bio-medical researchers, but likely applies to other fields).
This package provides functions and data-sets that are helpful for teaching statistics and data analysis. It was originally designed for use when teaching students in the Psychology Department at Nottingham Trent University.
Numerical derivatives through finite-difference approximations can be calculated using the pnd package with parallel capabilities and optimal step-size selection to improve accuracy. These functions facilitate efficient computation of derivatives, gradients, Jacobians, and Hessians, allowing for more evaluations to reduce the mathematical and machine errors. Designed for compatibility with the numDeriv package, which has not received updates in several years, it introduces advanced features such as computing derivatives of arbitrary order, improving the accuracy of Hessian approximations by avoiding repeated differencing, and parallelising slow functions on Windows, Mac, and Linux.
User friendly functions for power and sample size analysis at one-way and two-way ANOVA settings take either effect size or delta and sigma as arguments. They are designed for both one-way and two-way ANOVA settings. In addition, a function for plotting power curves is available for power comparison, which can be easily visualized by statisticians and clinical researchers.
This package implements the American Heart Association Predicting Risk of cardiovascular disease EVENTs (PREVENT) equations from Khan SS, Matsushita K, Sang Y, and colleagues (2023) <doi:10.1161/CIRCULATIONAHA.123.067626>, with optional comparison with their de facto predecessor, the Pooled Cohort Equations from the American Heart Association and American College of Cardiology (2013) <doi:10.1161/01.cir.0000437741.48606.98> and the revision to the Pooled Cohort Equations from Yadlowsky and colleagues (2018) <doi:10.7326/M17-3011>.
This package provides a collection of functions to do model-based phylogenetic analysis. It includes functions to calculate community phylogenetic diversity, to estimate correlations among functional traits while accounting for phylogenetic relationships, and to fit phylogenetic generalized linear mixed models. The Bayesian phylogenetic generalized linear mixed models are fitted with the INLA package (<https://www.r-inla.org>).
This package provides tools for exploring projection pursuit classification tree using various projection pursuit indexes.
This package provides a Shiny input widget, pasteBoxInput, that allows users to paste images directly into a Shiny application. The pasted images are captured as Base64 encoded strings and can be used within the application for various purposes, such as display or further processing. This package is particularly useful for applications that require easy and quick image uploads without the need for traditional file selection dialog boxes.
This package provides functions for generating pseudo-random numbers that follow a uniform distribution [0,1]. Randomness tests were conducted using the National Institute of Standards and Technology test suite<https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final>, along with additional tests. The sequence generated depends on the initial values and parameters. The package includes a linear congruence map as the decision map and three chaotic maps to generate the pseudo-random sequence, which follow a uniform distribution. Other distributions can be generated from the uniform distribution using the Inversion Principle Method and BOX-Muller transformation. Small perturbations in seed values result in entirely different sequences of numbers due to the sensitive nature of the maps being used. The chaotic nature of the maps helps achieve randomness in the generator. Additionally, the generator is capable of producing random bits.
Perform sample size, power calculation and subsequent analysis for Immuno-oncology (IO) trials composed of responders and non-responders.
Sequential Monte Carlo (SMC) inference for fully Bayesian Gaussian process (GP) regression and classification models by particle learning (PL) following Gramacy & Polson (2011) <arXiv:0909.5262>. The sequential nature of inference and the active learning (AL) hooks provided facilitate thrifty sequential design (by entropy) and optimization (by improvement) for classification and regression models, respectively. This package essentially provides a generic PL interface, and functions (arguments to the interface) which implement the GP models and AL heuristics. Functions for a special, linked, regression/classification GP model and an integrated expected conditional improvement (IECI) statistic provide for optimization in the presence of unknown constraints. Separable and isotropic Gaussian, and single-index correlation functions are supported. See the examples section of ?plgp and demo(package="plgp") for an index of demos.
Piecewise constant hazard models for survival data. The package allows for right-censored, left-truncated, and interval-censored data.