Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a figure region is prepared, creating a plot region with suitable background color, grid lines or shadings, and providing axes and labeling if not suppressed. Subsequently, information carrying graphics elements can be added (points, lines, barplot with add=TRUE and so forth).
Offers a range of utilities and functions for everyday programming tasks. 1.Data Manipulation. Such as grouping and merging, column splitting, and character expansion. 2.File Handling. Read and convert files in popular formats. 3.Plotting Assistance. Helpful utilities for generating color palettes, validating color formats, and adding transparency. 4.Statistical Analysis. Includes functions for pairwise comparisons and multiple testing corrections, enabling perform statistical analyses with ease. 5.Graph Plotting, Provides efficient tools for creating doughnut plot and multi-layered doughnut plot; Venn diagrams, including traditional Venn diagrams, upset plots, and flower plots; Simplified functions for creating stacked bar plots, or a box plot with alphabets group for multiple comparison group.
Data analysis for Project Risk Management via the Second Moment Method, Monte Carlo Simulation, Contingency Analysis, Sensitivity Analysis, Earned Value Management, Learning Curves, Design Structure Matrices, and more.
This package provides a comprehensive suite of tools for analyzing Pakistan's Quarterly National Accounts data. Users can gain detailed insights into Pakistan's economic performance, visualize quarterly trends, and detect patterns and anomalies in key economic indicators. Compare sector contributionsâ including agriculture, industry, and servicesâ to understand their influence on economic growth or decline. Customize analyses by filtering and manipulating data to focus on specific areas of interest. Ideal for policymakers, researchers, and analysts aiming to make informed, data-driven decisions based on timely and detailed economic insights.
An implementation of the Elston-Stewart algorithm for calculating pedigree likelihoods given genetic marker data (Elston and Stewart (1971) <doi:10.1159/000152448>). The standard algorithm is extended to allow inbred founders. pedprobr is part of the pedsuite', a collection of packages for pedigree analysis in R. In particular, pedprobr depends on pedtools for pedigree manipulations and pedmut for mutation modelling. For more information, see Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
This package provides a collection of R functions that are widely used by the Petersen Lab. Included are functions for various purposes, including evaluating the accuracy of judgments and predictions, performing scoring of assessments, generating correlation matrices, conversion of data between various types, data management, psychometric evaluation, extensions related to latent variable modeling, various plotting capabilities, and other miscellaneous useful functions. By making the package available, we hope to make our methods reproducible and replicable by others and to help others perform their data processing and analysis methods more easily and efficiently. The codebase is provided in Petersen (2025) <doi:10.5281/zenodo.7602890> and on CRAN': <doi: 10.32614/CRAN.package.petersenlab>. The package is described in "Principles of Psychological Assessment: With Applied Examples in R" (Petersen, 2024, 2025a) <doi:10.1201/9781003357421>, <doi:10.25820/work.007199>, <doi:10.5281/zenodo.6466589> and in "Fantasy Football Analytics: Statistics, Prediction, and Empiricism Using R" (Petersen, 2025b).
This package provides tools for exploratory process data analysis. Process data refers to the data describing participants problem-solving processes in computer-based assessments. It is often recorded in computer log files. This package provides functions to read, process, and write process data. It also implements two feature extraction methods to compress the information stored in process data into standard numerical vectors. This package also provides recurrent neural network based models that relate response processes with other binary or scale variables of interest. The functions that involve training and evaluating neural networks are wrappers of functions in keras'.
Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
Transforms datetime data into a format ready for analysis. It offers two core functionalities; aggregating data to a higher level interval (thicken) and imputing records where observations were absent (pad).
This package provides functions are available to calibrate designs over a range of posterior and predictive thresholds, to plot the various design options, and to obtain the operating characteristics of optimal accuracy and optimal efficiency designs.
This package provides methods to calculate and present PHENTHAUproc', an early warning and decision support system for hazard assessment and control of oak processionary moth (OPM) using local and spatial temperature data. It was created by Halbig et al. 2024 (<doi:10.1016/j.foreco.2023.121525>) at FVA (<https://www.fva-bw.de/en/homepage/>) Forest Research Institute Baden-Wuerttemberg, Germany and at BOKU - University of Natural Ressources and Life Sciences, Vienna, Austria.
The Penn World Table 9.x (<http://www.ggdc.net/pwt/>) provides information on relative levels of income, output, inputs, and productivity for 182 countries between 1950 and 2017.
An implementation of data analysis tools for samples of symmetric or Hermitian positive definite matrices, such as collections of covariance matrices or spectral density matrices. The tools in this package can be used to perform: (i) intrinsic wavelet transforms for curves (1D) or surfaces (2D) of Hermitian positive definite matrices with applications to dimension reduction, denoising and clustering in the space of Hermitian positive definite matrices; and (ii) exploratory data analysis and inference for samples of positive definite matrices by means of intrinsic data depth functions and rank-based hypothesis tests in the space of Hermitian positive definite matrices.
Latent group structures are a common challenge in panel data analysis. Disregarding group-level heterogeneity can introduce bias. Conversely, estimating individual coefficients for each cross-sectional unit is inefficient and may lead to high uncertainty. This package addresses the issue of unobservable group structures by implementing the pairwise adaptive group fused Lasso (PAGFL) by Mehrabani (2023) <doi:10.1016/j.jeconom.2022.12.002>. PAGFL identifies latent group structures and group-specific coefficients in a single step. On top of that, we extend the PAGFL to time-varying coefficient functions (FUSE-TIME), following Haimerl et al. (2025) <doi:10.48550/arXiv.2503.23165>.
This package provides a Shiny application for calculating phytosanitary inspection plans based on risks. It generates a diagram of pallets in a lot, highlights the units to be sampled, and documents them based on the selected sampling method (simple random or systematic sampling).
Enables the manufacturing, analysis and display of pressure volume curves. From the progression of the curves, turgor loss point, osmotic potential and apoplastic fraction can be derived. Methods adapted from Bartlett, Scoffoni and Sack (2012) <doi:10.1111/j.1461-0248.2012.01751.x>.
Simulation of models Poisson-Tweedie.
An implementation of the Partition Of variation (POV) method as developed by Dr. Thomas A Little <https://thomasalittleconsulting.com> in 1993 for the analysis of semiconductor data for hard drive manufacturing. POV is based on sequential sum of squares and is an exact method that explains all observed variation. It quantitates both the between and within factor variation effects and can quantitate the influence of both continuous and categorical factors.
This package provides a user friendly way to create patient level prediction models using the Observational Medical Outcomes Partnership Common Data Model. Given a cohort of interest and an outcome of interest, the package can use data in the Common Data Model to build a large set of features. These features can then be used to fit a predictive model with a number of machine learning algorithms. This is further described in Reps (2017) <doi:10.1093/jamia/ocy032>.
Bayesian variable selection for regression models of under-reported count data as well as for (overdispersed) Poisson, negative binomal and binomial logit regression models using spike and slab priors.
Different methods for PLS analysis of one or two data tables such as Tucker's Inter-Battery, NIPALS, SIMPLS, SIMPLS-CA, PLS Regression, and PLS Canonical Analysis. The main reference for this software is the awesome book (in French) La Regression PLS: Theorie et Pratique by Michel Tenenhaus.
The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures (Kramer and Sugiyama 2012 <doi:10.1198/jasa.2011.tm10107>). Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.
Implementation of commonly used penalized functional linear regression models, including the Smooth and Locally Sparse (SLoS) method by Lin et al. (2016) <doi:10.1080/10618600.2016.1195273>, Nested Group bridge Regression (NGR) method by Guan et al. (2020) <doi:10.1080/10618600.2020.1713797>, Functional Linear Regression That's interpretable (FLIRTI) by James et al. (2009) <doi:10.1214/08-AOS641>, and the Penalized B-spline regression method.
Hexadecimal codes are typically used to represent colors in R. Connecting these codes to their colors requires practice or memorization. palette provides a vctrs class for working with color palettes, including printing and plotting functions. The goal of the class is to place visual representations of color palettes directly on or, at least, next to their corresponding character representations. Palette extensions also are provided for data frames using pillar'.