Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
In causal mediation analysis with multiple causally ordered mediators, a set of path-specific effects are identified under standard ignorability assumptions. This package implements an imputation approach to estimating these effects along with a set of bias formulas for conducting sensitivity analysis (Zhou and Yamamoto <doi:10.31235/osf.io/2rx6p>). It contains two main functions: paths() for estimating path-specific effects and sens() for conducting sensitivity analysis. Estimation uncertainty is quantified using the nonparametric bootstrap.
Deterministic Pena-Yohai initial estimator for robust S estimators of regression. The procedure is described in detail in Pena, D., & Yohai, V. (1999) <doi:10.2307/2670164>.
Estimation and inference of spatial and spatio-temporal semiparametric models including spatial or spatio-temporal non-parametric trends, parametric and non-parametric covariates and, possibly, a spatial lag for the dependent variable and temporal correlation in the noise. The spatio-temporal trend can be decomposed in ANOVA way including main and interaction functional terms. Use of SAP algorithm to estimate the spatial or spatio-temporal trend and non-parametric covariates. The methodology of these models can be found in next references Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>; Rodriguez-Alvarez, M.X. et al. (2015) <doi:10.1007/s11222-014-9464-2> and, particularly referred to the focus of the package, Minguez, R., Basile, R. and Durban, M. (2020) <doi:10.1007/s10260-019-00492-8>.
Check a data frame for personal information, including names, location, disability status, and geo-coordinates.
Data for the extraterrestrial solar spectral irradiance and ground level solar spectral irradiance and irradiance. In addition data for shade light under vegetation and irradiance time series from different broadband sensors. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides a set of tools to install, manage and run several Pandoc versions.
Latent class analysis and latent class regression models for polytomous outcome variables. Also known as latent structure analysis.
This package provides a general framework for constructing partial dependence (i.e., marginal effect) plots from various types machine learning models in R.
Infer the genetic composition of individuals in terms of haplotype dosages for a haploblock, based on bi-allelic marker dosages, for any ploidy level. Reference: Voorrips and Tumino: PolyHaplotyper: haplotyping in polyploids based on bi-allelic marker dosage data. Submitted to BMC Bioinformatics (2021).
Pattern Sequence Based Forecasting (PSF) takes univariate time series data as input and assist to forecast its future values. This algorithm forecasts the behavior of time series based on similarity of pattern sequences. Initially, clustering is done with the labeling of samples from database. The labels associated with samples are then used for forecasting the future behaviour of time series data. The further technical details and references regarding PSF are discussed in Vignette.
This package provides tools for retrieving and analyzing air quality data from PurpleAir sensors through their API. Functions enable downloading historical measurements, accessing sensor metadata, and managing API request limitations through chunked data retrieval. For more information about the PurpleAir API, see <https://api.purpleair.com/>.
This package provides functions used for analyzing count data, mostly crime counts. Includes checking difference in two Poisson counts (e-test), checking the fit for a Poisson distribution, small sample tests for counts in bins, Weighted Displacement Difference test (Wheeler and Ratcliffe, 2018) <doi:10.1186/s40163-018-0085-5>, to evaluate crime changes over time in treated/control areas. Additionally includes functions for aggregating spatial data and spatial feature engineering.
Log-multiplicative association models (LMA) are models for cross-classifications of categorical variables where interactions are represented by products of category scale values and an association parameter. Maximum likelihood estimation (MLE) fails for moderate to large numbers of categorical variables. The pleLMA package overcomes this limitation of MLE by using pseudo-likelihood estimation to fit the models to small or large cross-classifications dichotomous or multi-category variables. Originally proposed by Besag (1974, <doi:10.1111/j.2517-6161.1974.tb00999.x>), pseudo-likelihood estimation takes large complex models and breaks it down into smaller ones. Rather than maximizing the likelihood of the joint distribution of all the variables, a pseudo-likelihood function, which is the product likelihoods from conditional distributions, is maximized. LMA models can be derived from a number of different frameworks including (but not limited to) graphical models and uni-dimensional and multi-dimensional item response theory models. More details about the models and estimation can be found in the vignette.
Includes functions implementing the conditionally optimal matching algorithm, which can be used to generate matched samples in designs with multiple groups. The algorithm is described in Nattino, Song and Lu (2022) <doi:10.1016/j.csda.2021.107364>.
Analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature. Bjerrum, L., Rosholm, J. U., Hallas, J., & Kragstrup, J. (1997) <doi:10.1007/s002280050329>. Chan, D.-C., Hao, Y.-T., & Wu, S.-C. (2009a) <doi:10.1002/pds.1712>. Fincke, B. G., Snyder, K., Cantillon, C., Gaehde, S., Standring, P., Fiore, L., ... Gagnon, D.R. (2005) <doi:10.1002/pds.966>. Hovstadius, B., Astrand, B., & Petersson, G. (2009) <doi:10.1186/1472-6904-9-11>. Hovstadius, B., Astrand, B., & Petersson, G. (2010) <doi:10.1002/pds.1921>. Kennerfalk, A., Ruigómez, A., Wallander, M.-A., Wilhelmsen, L., & Johansson, S. (2002) <doi:10.1345/aph.1A226>. Masnoon, N., Shakib, S., Kalisch-Ellett, L., & Caughey, G. E. (2017) <doi:10.1186/s12877-017-0621-2>. Narayan, S. W., & Nishtala, P. S. (2015) <doi:10.1007/s40801-015-0020-y>. Nishtala, P. S., & Salahudeen, M. S. (2015) <doi:10.1159/000368191>. Park, H. Y., Ryu, H. N., Shim, M. K., Sohn, H. S., & Kwon, J. W. (2016) <doi:10.5414/cp202484>. Veehof, L., Stewart, R., Haaijer-Ruskamp, F., & Jong, B. M. (2000) <doi:10.1093/fampra/17.3.261>.
This package provides functions to estimate statistical errors of phylogenetic metrics particularly to detect binary trait influence on diversification, as well as a function to simulate trees with fixed number of sampled taxa and trait prevalence.
Implementation of the Phoenix and Phoenix-8 Sepsis Criteria as described in "Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock" by Sanchez-Pinto, Bennett, DeWitt, Russell et al. (2024) <doi:10.1001/jama.2024.0196> (Drs. Sanchez-Pinto and Bennett contributed equally to this manuscript; Dr. DeWitt and Mr. Russell contributed equally to the manuscript), "International Consensus Criteria for Pediatric Sepsis and Septic Shock" by Schlapbach, Watson, Sorce, Argent, et al. (2024) <doi:10.1001/jama.2024.0179> (Drs Schlapbach, Watson, Sorce, and Argent contributed equally) and the application note "phoenix: an R package and Python module for calculating the Phoenix pediatric sepsis score and criteria" by DeWitt, Russell, Rebull, Sanchez-Pinto, and Bennett (2024) <doi:10.1093/jamiaopen/ooae066>.
Read depth data from genotyping-by-sequencing (GBS) or restriction site-associated DNA sequencing (RAD-seq) are imported and used to make Bayesian probability estimates of genotypes in polyploids or diploids. The genotype probabilities, posterior mean genotypes, or most probable genotypes can then be exported for downstream analysis. polyRAD is described by Clark et al. (2019) <doi:10.1534/g3.118.200913>, and the Hind/He statistic for marker filtering is described by Clark et al. (2022) <doi:10.1186/s12859-022-04635-9>. A variant calling pipeline for highly duplicated genomes is also included and is described by Clark et al. (2020, Version 1) <doi:10.1101/2020.01.11.902890>.
This package provides a friendly API for sequence iteration and set comprehension.
Create sliders from left, right, top and bottom which may include any html or Shiny input or output.
Wrapper of the Petfinder API <https://www.petfinder.com/developers/v2/docs/> that implements methods for interacting with and extracting data from the Petfinder database. The Petfinder REST API allows access to the Petfinder database, one of the largest online databases of adoptable animals and animal welfare organizations across North America.
Implementation of PsychroLib <https://github.com/psychrometrics/psychrolib> library which contains functions to enable the calculation properties of moist and dry air in both metric (SI) and imperial (IP) systems of units. References: Meyer, D. and Thevenard, D (2019) <doi:10.21105/joss.01137>.
In the era of big data, data redundancy and distributed characteristics present novel challenges to data analysis. This package introduces a method for estimating optimal subsets of redundant distributed data, based on PPCDT (Conjunction of Power and P-value in Distributed Settings). Leveraging PPC technology, this approach can efficiently extract valuable information from redundant distributed data and determine the optimal subset. Experimental results demonstrate that this method not only enhances data quality and utilization efficiency but also assesses its performance effectively. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.
Visualizes the coverage depth of a complete plastid genome as well as the equality of its inverted repeat regions in relation to the circular, quadripartite genome structure and the location of individual genes. For more information, please see Gruenstaeudl and Jenke (2020) <doi:10.1186/s12859-020-3475-0>.