Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a unified and user-friendly framework for applying the principal sufficient dimension reduction methods for both linear and nonlinear cases. The package has an extendable power by varying loss functions for the support vector machine, even for an user-defined arbitrary function, unless those are convex and differentiable everywhere over the support (Li et al. (2011) <doi:10.1214/11-AOS932>). Also, it provides a real-time sufficient dimension reduction update procedure using the principal least squares support vector machine (Artemiou et al. (2021) <doi:10.1016/j.patcog.2020.107768>).
Complex graphical representations of data are best explored using interactive elements. parcats adds interactive graphing capabilities to the easyalluvial package. The plotly.js parallel categories diagrams offer a good framework for creating interactive flow graphs that allow manual drag and drop sorting of dimensions and categories, highlighting single flows and displaying mouse over information. The plotly.js dependency is quite heavy and therefore is outsourced into a separate package.
Format and submit few-shot prompts to OpenAI's Large Language Models (LLMs). Designed to be particularly useful for text classification problems in the social sciences. Methods are described in Ornstein, Blasingame, and Truscott (2024) <https://joeornstein.github.io/publications/ornstein-blasingame-truscott.pdf>.
This package provides functions to perform the peer performance analysis of funds returns as described in Ardia and Boudt (2018) <doi:10.1016/j.jbankfin.2017.10.014>.
Engineered features and "helper" functions ancillary to the public.ctn0094data package, extending this package for ease of use (see <https://CRAN.R-project.org/package=public.ctn0094data>). This public.ctn0094data package contains harmonized datasets from some of the National Institute of Drug Abuse's Clinical Trials Network (NIDA's CTN) projects. Specifically, the CTN-0094 project is to harmonize and de-identify clinical trials data from the CTN-0027, CTN-0030, and CTN-51 studies for opioid use disorder. This current version is built from public.ctn0094data v. 1.0.6.
This package provides functions for bootstrapping the power of ANOVA designs based on estimated means and standard deviations of the conditions. Please refer to the documentation of the boot.power.anova() function for further details.
We fit causal models using proxies. We implement two stage proximal least squares estimator. E.J. Tchetgen Tchetgen, A. Ying, Y. Cui, X. Shi, and W. Miao. (2020). An Introduction to Proximal Causal Learning. arXiv e-prints, arXiv-2009 <arXiv:2009.10982>.
This package provides methods for spatial predictive modeling, especially for spatial distribution models. This includes algorithms for model fitting and prediction, as well as methods for model evaluation.
We provide comprehensive draft data for major professional sports leagues, including the National Football League (NFL), National Basketball Association (NBA), and National Hockey League (NHL). It offers access to both historical and current draft data, allowing for detailed analysis and research on player biases and player performance. The package is useful for sports fans and researchers interested in identifying biases and trends within scouting reports. Created by web scraping data from leading websites that cover professional sports player scouting reports, the package allows users to filter and summarize data for analytical purposes. For further details on the methods used, please refer to Wickham (2022) "rvest: Easily Harvest (Scrape) Web Pages" <https://CRAN.R-project.org/package=rvest> and Harrison (2023) "RSelenium: R Bindings for Selenium WebDriver" <https://CRAN.R-project.org/package=RSelenium>.
This package provides tools for processing, analyzing, and visualizing spectral data collected from 3D laser-based scanning systems. Supports applications in agriculture, forestry, environmental monitoring, industrial quality control, and biomedical research. Enables evaluation of plant growth, productivity, resource efficiency, disease management, and pest monitoring. Includes statistical methods for extracting insights from multispectral and hyperspectral data and generating publication-ready visualizations. See Zieschank & Junker (2023) <doi:10.3389/fpls.2023.1141554> and Saric et al. (2022) <doi:10.1016/J.TPLANTS.2021.12.003> for related work.
This package provides a comprehensive suite of tools for analyzing Pakistan's Quarterly National Accounts data. Users can gain detailed insights into Pakistan's economic performance, visualize quarterly trends, and detect patterns and anomalies in key economic indicators. Compare sector contributionsâ including agriculture, industry, and servicesâ to understand their influence on economic growth or decline. Customize analyses by filtering and manipulating data to focus on specific areas of interest. Ideal for policymakers, researchers, and analysts aiming to make informed, data-driven decisions based on timely and detailed economic insights.
An implementation of the ternary plot for interpreting regression coefficients of trinomial regression models, as proposed in Santi, Dickson and Espa (2019) <doi:10.1080/00031305.2018.1442368>. Ternary plots can be drawn using either ggtern package (based on ggplot2') or Ternary package (based on standard graphics). The package and its features are illustrated in Santi, Dickson, Espa and Giuliani (2022) <doi:10.18637/jss.v103.c01>.
Investigate (analytically or visually) the inputs and outputs of probabilistic analyses of health economic models using standard health economic visualisation and metamodelling methods.
Run Queries against the API of Piwik Pro <https://developers.piwik.pro/en/latest/custom_reports/http_api/http_api.html>. The result is a tibble.
This package provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.
Use probability theory under the Bayesian framework for calculating the risk of selecting candidates in a multi-environment context. Contained are functions used to fit a Bayesian multi-environment model (based on the available presets), extract posterior values and maximum posterior values, compute the variance components, check the modelâ s convergence, and calculate the probabilities. For both across and within-environments scopes, the package computes the probability of superior performance and the pairwise probability of superior performance. Furthermore, the probability of superior stability and the pairwise probability of superior stability across environments is estimated. A joint probability of superior performance and stability is also provided.
Simulating particle movement in 2D space has many application. The particles package implements a particle simulator based on the ideas behind the d3-force JavaScript library. particles implements all forces defined in d3-force as well as others such as vector fields, traps, and attractors.
Analysis of features by phi delta diagrams. In particular, functions for reading data and calculating phi and delta as well as the functionality to plot it. Moreover it is possible to do further analysis on the data by generating rankings. For more information on phi delta diagrams, see also Giuliano Armano (2015) <doi:10.1016/j.ins.2015.07.028>.
Extends the S3 generic function knit_print() in knitr to automatically print some objects using an appropriate format such as Markdown or LaTeX. For example, data frames are automatically printed as tables, and the help() pages can also be rendered in knitr documents.
Allows users to access the Oregon State Prism climate data (<https://prism.nacse.org/>). Using the web service API data can easily downloaded in bulk and loaded into R for spatial analysis. Some user friendly visualizations are also provided.
Seq2seq time-feature analysis based on variational model, with a wide range of distributions available for the latent variable.
Paired mass distance (PMD) analysis proposed in Yu, Olkowicz and Pawliszyn (2018) <doi:10.1016/j.aca.2018.10.062> and PMD based reactomics analysis proposed in Yu and Petrick (2020) <doi:10.1038/s42004-020-00403-z> for gas/liquid chromatographyâ mass spectrometry (GC/LC-MS) based non-targeted analysis. PMD analysis including GlobalStd algorithm and structure/reaction directed analysis. GlobalStd algorithm could found independent peaks in m/z-retention time profiles based on retention time hierarchical cluster analysis and frequency analysis of paired mass distances within retention time groups. Structure directed analysis could be used to find potential relationship among those independent peaks in different retention time groups based on frequency of paired mass distances. Reactomics analysis could also be performed to build PMD network, assign sources and make biomarker reaction discovery. GUIs for PMD analysis is also included as shiny applications.
Fits single- and multiple-group penalized factor analysis models via a trust-region algorithm with integrated automatic multiple tuning parameter selection (Geminiani et al., 2021 <doi:10.1007/s11336-021-09751-8>). Available penalties include lasso, adaptive lasso, scad, mcp, and ridge.
This package provides a collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.