This package provides an R-interface to the TMDb API (see TMDb API on <https://developers.themoviedb.org/3/getting-started/introduction>). The Movie Database (TMDb) is a popular user editable database for movies and TV shows (see <https://www.themoviedb.org>).
Approximations of global p-values when testing hypothesis in presence of non-identifiable nuisance parameters. The method relies on the Euler characteristic heuristic and the expected Euler characteristic is efficiently computed by in Algeri and van Dyk (2018) <arXiv:1803.03858>.
Package that implements the FGGA algorithm. This package provides a hierarchical ensemble method based ob factor graphs for the consistent cross-ontology annotation of protein coding genes. FGGA embodies elements of predicate logic, communication theory, supervised learning and inference in graphical models.
Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.
This package automates analysis workflow for Thermal Shift Analysis (TSA) data. Processing, analyzing, and visualizing data through both shiny applications and command lines. Package aims to simplify data analysis and offer front to end workflow, from raw data to multiple trial analysis.
This package provides functions for reading array comparative genomic hybridization (aCGH) data from image analysis output files and clone information files, creation of aCGH objects for storing these data. Basic methods are accessing/replacing, subsetting, printing and plotting aCGH objects.
R-scape discovers RNA secondary structure consensus elements. These elements include riboswitches and ribozymes. It utilizes probabilistic modeling of sequence alignments, explicitly considering folding dependencies. The tool enables the de novo search for new structural elements and facilitates comparative analysis of known RNA families.
This package provides tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). The area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.
This package generates well-known integer sequences. The gmp package is adopted for computing with arbitrarily large numbers. Every function has a hyperlink to its corresponding item in the On-Line Encyclopedia of Integer Sequences (OEIS) in the function help page.
This package provides S3 classes and methods to create and work with year-quarter, year-month and year-isoweek vectors. Basic arithmetic operations (such as adding and subtracting) are supported, as well as formatting and converting to and from standard R date types.
The Randomized Trait Community Clustering method (Triado-Margarit et al., 2019, <doi:10.1038/s41396-019-0454-4>) is a statistical approach which allows to determine whether if an observed trait clustering pattern is related to an increasing environmental constrain. The method 1) determines whether exists or not a trait clustering on the sampled communities and 2) assess if the observed clustering signal is related or not to an increasing environmental constrain along an environmental gradient. Also, when the effect of the environmental gradient is not linear, allows to determine consistent thresholds on the community assembly based on trait-values.
ROCR is a flexible tool for creating cutoff-parameterized 2D performance curves by freely combining two from over 25 performance measures (new performance measures can be added using a standard interface). Curves from different cross-validation or bootstrapping runs can be averaged by different methods, and standard deviations, standard errors or box plots can be used to visualize the variability across the runs. The parameterization can be visualized by printing cutoff values at the corresponding curve positions, or by coloring the curve according to cutoff. All components of a performance plot can be quickly adjusted using a flexible parameter dispatching mechanism.
This package provides functions to model and decompose time series into principal components using singular spectrum analysis (de Carvalho and Rua (2017) <doi:10.1016/j.ijforecast.2015.09.004>; de Carvalho et al (2012) <doi:10.1016/j.econlet.2011.09.007>).
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
Calculates the necessary quantities to perform Bayesian multigroup equivalence testing. Currently the package includes the Bayesian models and equivalence criteria outlined in Pourmohamad and Lee (2023) <doi:10.1002/sta4.645>, but more models and equivalence testing features may be added over time.
Fits a discharge rating curve based on the power-law and the generalized power-law from data on paired stage and discharge measurements in a given river using a Bayesian hierarchical model as described in Hrafnkelsson et al. (2020) <arXiv:2010.04769>.
This package provides a time series usually does not have a uniform growth rate. Compound Annual Growth Rate measures the average annual growth over a given period. More details can be found in Bardhan et al. (2022) <DOI:10.18805/ag.D-5418>.
Composite Kernel Association Test (CKAT) is a flexible and robust kernel machine based approach to jointly test the genetic main effect and gene-treatment interaction effect for a set of single-nucleotide polymorphisms (SNPs) in pharmacogenetics (PGx) assessments embedded within randomized clinical trials.
Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) <doi:10.1007/s11336-015-9484-7>. In addition, the package contains the datasets used within the analysis of the paper.
This package implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) <DOI:10.5705/ss.202016.0403> for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See <http://www.matthewpratola.com/software> for more information and examples.
This package provides a simple runner for fuzz-testing functions in an R package's public interface. Fuzz testing helps identify functions lacking sufficient argument validation, and uncovers problematic inputs that, while valid by function signature, may cause issues within the function body.
Implementation of different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data. It serves to compute empirical cumulative distributions and also kernel density and hazard functions using different bandwidth selectors. Several real data sets are included.
This package provides functions and an example dataset for the psychometric theory of knowledge spaces. This package implements data analysis methods and procedures for simulating data and quasi orders and transforming different formulations in knowledge space theory. See package?DAKS for an overview.