Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the data processing and data analysis portion of a pipeline named the PepSAVI-MS which is currently under development by the Hicks laboratory at the University of North Carolina. The statistical analysis package presented herein provides a collection of software tools used to facilitate the prioritization of putative bioactive peptides from a complex biological matrix. Tools are provided to deconvolute mass spectrometry features into a single representation for each peptide charge state, filter compounds to include only those possibly contributing to the observed bioactivity, and prioritize these remaining compounds for those most likely contributing to each bioactivity data set.
Data are partitioned (clustered) into k clusters "around medoids", which is a more robust version of K-means implemented in the function pam() in the cluster package. The PAM algorithm is described in Kaufman and Rousseeuw (1990) <doi:10.1002/9780470316801>. Please refer to the pam() function documentation for more references. Clustered data is plotted as a split heatmap allowing visualisation of representative "group-clusters" (medoids) in the data as separated fractions of the graph while those "sub-clusters" are visualised as a traditional heatmap based on hierarchical clustering.
Fits Emax models to pharmacokinetic/pharmacodynamic (PK/PD) data, estimate key parameters, and visualise model fits for multiple PK/PD indices. Methods are described in Macdougall J (2006) <doi:10.1007/0-387-33706-7_9>, Spiess AN, Neumeyer N (2010) <doi:10.1186/1471-2210-10-6>, and Burnham KP, Anderson DR (2004) <doi:10.1177/0049124104268644>.
This package provides a function to estimate panel-corrected standard errors. Data may contain balanced or unbalanced panels.
An implementation of the pediatric complex chronic conditions (CCC) classification system using R and C++.
This package performs genomic prediction of hybrid performance using eight statistical methods including GBLUP, BayesB, RKHS, PLS, LASSO, EN, LightGBM and XGBoost along with additive and additive-dominance models. Users are able to incorporate parental phenotypic information in all methods based on their specific needs. (Xu S et al(2017) <doi:10.1534/g3.116.038059>; Xu Y et al (2021) <doi: 10.1111/pbi.13458>).
Fit penalized splines mixed-effects models (a special case of additive models) for large longitudinal datasets. The package includes a psme() function that (1) relies on package mgcv for constructing population and subject smooth functions as penalized splines, (2) transforms the constructed additive model to a linear mixed-effects model, (3) exploits package lme4 for model estimation and (4) backtransforms the estimated linear mixed-effects model to the additive model for interpretation and visualization. See Pedersen et al. (2019) <doi:10.7717/peerj.6876> and Bates et al. (2015) <doi:10.18637/jss.v067.i01> for an introduction. Unlike the gamm() function in mgcv', the psme() function is fast and memory-efficient, able to handle datasets with millions of observations.
This package provides essential checklists for R package developers, whether you're creating your first package or beginning a new project. This tool guides you through each step of the development process, including specific considerations for submitting your package to the Comprehensive R Archive Network (CRAN). Simplify your workflow and ensure adherence to best practices with packagepal'.
Sample size calculations in causal inference with observational data are increasingly desired. This package is a tool to calculate sample size under prespecified power with minimal summary quantities needed.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
The 2017 American College of Cardiology and American Heart Association blood pressure guideline recommends using 10-year predicted atherosclerotic cardiovascular disease risk to guide the decision to initiate or intensify antihypertensive medication. The guideline recommends using the Pooled Cohort risk prediction equations to predict 10-year atherosclerotic cardiovascular disease risk. This package implements the original Pooled Cohort risk prediction equations and also incorporates updated versions based on more contemporary data and statistical methods.
This package provides profile likelihoods for a parameter of interest in commonly used statistical models. The models include linear models, generalized linear models, proportional odds models, linear mixed-effects models, and linear models for longitudinal responses fitted by generalized least squares. The package also provides plots for normalized profile likelihoods as well as the maximum profile likelihood estimates and the kth likelihood support intervals.
This package provides a suite of diagnostic tools for univariate point processes. This includes tools for simulating and fitting both common and more complex temporal point processes. We also include functions to visualise these point processes and collect existing diagnostic tools of Brown et al. (2002) <doi:10.1162/08997660252741149> and Wu et al. (2021) <doi:10.1002/9781119821588.ch7>, which can be used to assess the fit of a chosen point process model.
This package provides a collection of process capability index functions, such as C_p(), C_pk(), C_pm(), and others, along with metadata about each, like LaTeX equations and R expressions. Its primary purpose is to form a foundation for other quality control packages to build on top of, by providing basic resources and functions. The indices belong to the field of statistical quality control, and quantify the degree to which a manufacturing process is able to create items that adhere to a certain standard of quality. For details see Montgomery, D. C. (2019, ISBN:978-1-119-39930-8).
Provide easy methods to translate pieces of text. Functions send requests to translation services online.
This package contains the functions for construction and visualization of underlying and reflexivity graphs of the three families of the proximity catch digraphs (PCDs), see (Ceyhan (2005) ISBN:978-3-639-19063-2), and for computing the edge density of these PCD-based graphs which are then used for testing the patterns of segregation and association against complete spatial randomness (CSR)) or uniformity in one and two dimensional cases. The PCD families considered are Arc-Slice PCDs, Proportional-Edge (PE) PCDs (Ceyhan et al. (2006) <doi:10.1016/j.csda.2005.03.002>) and Central Similarity PCDs (Ceyhan et al. (2007) <doi:10.1002/cjs.5550350106>). See also (Ceyhan (2016) <doi:10.1016/j.stamet.2016.07.003>) for edge density of the underlying and reflexivity graphs of PE-PCDs. The package also has tools for visualization of PCD-based graphs for one, two, and three dimensional data.
Create a parallel coordinates plot, using `htmlwidgets` package and `d3.js`.
Joint frailty models have been widely used to study the associations between recurrent events and a survival outcome. However, existing joint frailty models only consider one or a few recurrent events and cannot deal with high-dimensional recurrent events. This package can be used to fit our recently developed penalized joint frailty model that can handle high-dimensional recurrent events. Specifically, an adaptive lasso penalty is imposed on the parameters for the effects of the recurrent events on the survival outcome, which allows for variable selection. Also, our algorithm is computationally efficient, which is based on the Gaussian variational approximation method.
Annotate plots with legends for continuous variables and colour spectra using the base graphics plotting tools; and manipulate irregular polygons.
This package provides a function PWI() that calculates prize winner indices based on bibliometric data is provided. The default is the Derek de Solla Price Memorial Medal'. Users can provide recipients of other prizes.
Function pip3d() tests whether a point in 3D space is within, exactly on, or outside an enclosed surface defined by a triangular mesh. Function pip2d() tests whether a point in 2D space is within, exactly on, or outside a polygon. For a reference, see: Liu et al., A new point containment test algorithm based on preprocessing and determining triangles, Computer-Aided Design 42(12):1143-1150.
Particle swarm optimization - a basic variant.
An embedded proximal interior point quadratic programming solver, which can solve dense and sparse quadratic programs, described in Schwan, Jiang, Kuhn, and Jones (2023) <doi:10.48550/arXiv.2304.00290>. Combining an infeasible interior point method with the proximal method of multipliers, the algorithm can handle ill-conditioned convex quadratic programming problems without the need for linear independence of the constraints. The solver is written in header only C++ 14 leveraging the Eigen library for vectorized linear algebra. For small dense problems, vectorized instructions and cache locality can be exploited more efficiently. Allocation free problem updates and re-solves are also provided.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Men questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).