Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Draw 2 dimensional and three dimensional plot for multiple regression models using package ggplot2 and rgl'. Supports linear models (lm), generalized linear models (glm) and local polynomial regression fittings (loess).
Matches cases to controls based on genotype principal components (PC). In order to produce better results, matches are based on the weighted distance of PCs where the weights are equal to the % variance explained by that PC. A weighted Mahalanobis distance metric (Kidd et al. (1987) <DOI:10.1016/0031-3203(87)90066-5>) is used to determine matches.
This package provides functions that allow you to generate and compare power spectral density (PSD) plots given time series data. Fast Fourier Transform (FFT) is used to take a time series data, analyze the oscillations, and then output the frequencies of these oscillations in the time series in the form of a PSD plot.Thus given a time series, the dominant frequencies in the time series can be identified. Additional functions in this package allow the dominant frequencies of multiple groups of time series to be compared with each other. To see example usage with the main functions of this package, please visit this site: <https://yhhc2.github.io/psdr/articles/Introduction.html>. The mathematical operations used to generate the PSDs are described in these sites: <https://www.mathworks.com/help/matlab/ref/fft.html>. <https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html>.
An implementation of prediction intervals for random-effects meta-analysis: Higgins et al. (2009) <doi:10.1111/j.1467-985X.2008.00552.x>, Partlett and Riley (2017) <doi:10.1002/sim.7140>, and Nagashima et al. (2019) <doi:10.1177/0962280218773520>, <arXiv:1804.01054>.
Search CRAN metadata about packages by keyword, popularity, recent activity, package name and more. Uses the R-hub search server, see <https://r-pkg.org> and the CRAN metadata database, that contains information about CRAN packages. Note that this is _not_ a CRAN project.
This package implements multinomial CDF (P(N1<=n1, ..., Nk<=nk)) and tail probabilities (P(N1>n1, ..., Nk>nk)), as well as probabilities with both constraints (P(l1<N1<=u1, ..., lk<Nk<=uk)). Uses a method suggested by Bruce Levin (1981) <doi:10.1214/aos/1176345593>.
Bandwidth selector according to the Penalised Comparison to Overfitting (P.C.O.) criterion as described in Varet, S., Lacour, C., Massart, P., Rivoirard, V., (2019) <https://hal.archives-ouvertes.fr/hal-02002275>. It can be used with univariate and multivariate data.
This package provides data sets and functions for exploration of Pakistan Population Census 2023 (<https://www.pbs.gov.pk/>).
Estimates two-level multilevel linear model and two-level multivariate linear multilevel model with weights following Probability Weighted Iterative Generalised Least Squares approach. For details see Veiga et al.(2014) <doi:10.1111/rssc.12020>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 Household questionnaire data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of Sustainable Development Goals (SDGs) monitoring, as the survey produces information on 32 global Sustainable Development Goals (SDGs) indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using probability proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household (<http://www.mics.unicef.org/surveys>).
This package provides access to a high performant random distribution sampler for the Polya Gamma Distribution using either C++ headers for Rcpp or RcppArmadillo and R'.
This package provides functions to implement and simulate the partial order continual reassessment method (PO-CRM) of Wages, Conaway and O'Quigley (2011) <doi:10.1177/1740774511408748> for use in Phase I trials of combinations of agents. Provides a function for generating a set of initial guesses (skeleton) for the toxicity probabilities at each combination that correspond to the set of possible orderings of the toxicity probabilities specified by the user.
Create regular pivot tables with just a few lines of R. More complex pivot tables can also be created, e.g. pivot tables with irregular layouts, multiple calculations and/or derived calculations based on multiple data frames. Pivot tables are constructed using R only and can be written to a range of output formats (plain text, HTML', Latex and Excel'), including with styling/formatting.
Distributes data from the Polarization in Comparative Attitudes Project. Helper functions enable data retrieval in wide and tidy formats for user-defined countries and years. Provides support for case-insensitive country names in many languages. Mehlhaff (2022) <https://imehlhaff.net/files/Polarization%20and%20Democracy.pdf>.
Miscellaneous small utilities are provided to mitigate issues with messy, inconsistent or high dimensional data and help for preprocessing and preparing analyses.
Pupillometric data collected using SR Research Eyelink eye trackers requires significant preprocessing. This package contains functions for preparing pupil dilation data for visualization and statistical analysis. Specifically, it provides a pipeline of functions which aid in data validation, the removal of blinks/artifacts, downsampling, and baselining, among others. Additionally, plotting functions for creating grand average and conditional average plots are provided. See the vignette for samples of the functionality. The package is designed for handling data collected with SR Research Eyelink eye trackers using Sample Reports created in SR Research Data Viewer.
Using the Bayesian state-space approach, we developed a continuous development model to quantify dynamic incremental changes in the response variable. While the model was originally developed for daily changes in forest green-up, the model can be used to predict any similar process. The CDM can capture both timing and rate of nonlinear processes. Unlike statics methods, which aggregate variations into a single metric, our dynamic model tracks the changing impacts over time. The CDM accommodates nonlinear responses to variation in predictors, which changes throughout development.
Two functions for financial portfolio optimization by linear programming are provided. One function implements Benders decomposition algorithm and can be used for very large data sets. The other, applicable for moderate sample sizes, finds optimal portfolio which has the smallest distance to a given benchmark portfolio.
Optimization of conditional inference trees from the package party for classification and regression. For optimization, the model space is searched for the best tree on the full sample by means of repeated subsampling. Restrictions are allowed so that only trees are accepted which do not include pre-specified uninterpretable split results (cf. Weihs & Buschfeld, 2021a). The function PrInDT() represents the basic resampling loop for 2-class classification (cf. Weihs & Buschfeld, 2021a). The function RePrInDT() (repeated PrInDT()) allows for repeated applications of PrInDT() for different percentages of the observations of the large and the small classes (cf. Weihs & Buschfeld, 2021c). The function NesPrInDT() (nested PrInDT()) allows for an extra layer of subsampling for a specific factor variable (cf. Weihs & Buschfeld, 2021b). The functions PrInDTMulev() and PrInDTMulab() deal with multilevel and multilabel classification. In addition to these PrInDT() variants for classification, the function PrInDTreg() has been developed for regression problems. Finally, the function PostPrInDT() allows for a posterior analysis of the distribution of a specified variable in the terminal nodes of a given tree. In version 2, additionally structured sampling is implemented in functions PrInDTCstruc() and PrInDTRstruc(). In these functions, repeated measurements data can be analyzed, too. Moreover, multilabel 2-stage versions of classification and regression trees are implemented in functions C2SPrInDT() and R2SPrInDT() as well as interdependent multilabel models in functions SimCPrInDT() and SimRPrInDT(). Finally, for mixtures of classification and regression models functions Mix2SPrInDT() and SimMixPrInDT() are implemented. Most of these extensions of PrInDT are described in Buschfeld & Weihs (2025Fc). References: -- Buschfeld, S., Weihs, C. (2025Fc) "Optimizing decision trees for the analysis of World Englishes and sociolinguistic data", Cambridge Elements. -- Weihs, C., Buschfeld, S. (2021a) "Combining Prediction and Interpretation in Decision Trees (PrInDT) - a Linguistic Example" <doi:10.48550/arXiv.2103.02336>; -- Weihs, C., Buschfeld, S. (2021b) "NesPrInDT: Nested undersampling in PrInDT" <doi:10.48550/arXiv.2103.14931>; -- Weihs, C., Buschfeld, S. (2021c) "Repeated undersampling in PrInDT (RePrInDT): Variation in undersampling and prediction, and ranking of predictors in ensembles" <doi:10.48550/arXiv.2108.05129>.
An implementation of the "Design Analysis" proposed by Gelman and Carlin (2014) <doi:10.1177/1745691614551642>. It combines the evaluation of Power-Analysis with other inferential-risks as Type-M error (i.e. Magnitude) and Type-S error (i.e. Sign). See also Altoè et al. (2020) <doi:10.3389/fpsyg.2019.02893> and Bertoldo et al. (2020) <doi:10.31234/osf.io/q9f86>.
Pooling, backward and forward selection of linear, logistic and Cox regression models in multiply imputed datasets. Backward and forward selection can be done from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and the median p-values method. This is also possible for Mixed models. The models can contain continuous, dichotomous, categorical and restricted cubic spline predictors and interaction terms between all these type of predictors. The stability of the models can be evaluated using (cluster) bootstrapping. The package further contains functions to pool model performance measures as ROC/AUC, Reclassification, R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models. Internal validation can be done across multiply imputed datasets with cross-validation or bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients can be obtained. Backward and forward selection as part of internal validation is possible. A function to externally validate logistic prediction models in multiple imputed datasets is available and a function to compare models. For Cox models a strata variable can be included. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>.
Utility functions for the handling, analysis and visualisation of data from portable emissions measurement systems ('PEMS') and other similar mobile activity monitoring devices. The package includes a dedicated pems data class that manages many of the quality control, unit handling and data archiving issues that can hinder efforts to standardise PEMS research.
This package provides an interactive Shiny-based toolkit for conducting latent structure analyses, including Latent Profile Analysis (LPA), Latent Class Analysis (LCA), Latent Trait Analysis (LTA/IRT), Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). The implementation is grounded in established methodological frameworks: LPA is supported through tidyLPA (Rosenberg et al., 2018) <doi:10.21105/joss.00978>, LCA through poLCA (Linzer & Lewis, 2011) <doi:10.32614/CRAN.package.poLCA> & glca (Kim & Kim, 2024) <doi:10.32614/CRAN.package.glca>, LTA/IRT via mirt (Chalmers, 2012) <doi:10.18637/jss.v048.i06>, and EFA via psych (Revelle, 2025). SEM and CFA functionalities build upon the lavaan framework (Rosseel, 2012) <doi:10.18637/jss.v048.i02>. Users can upload datasets or use built-in examples, fit models, compare fit indices, visualize results, and export outputs without programming.
Create an automated regression table that is well-suited for models that are estimated with multiple dependent variables. panelsummary extends modelsummary (Arel-Bundock, V. (2022) <doi:10.18637/jss.v103.i01>) by allowing regression tables to be split into multiple sections with a simple function call. Utilize familiar arguments such as fmt, estimate, statistic, vcov, conf_level, stars, coef_map, coef_omit, coef_rename, gof_map, and gof_omit from modelsummary to clean the table, and additionally, add a row for the mean of the dependent variable without external manipulation.