Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculates the right-tail probability of quadratic forms of Gaussian variables using the skewness-kurtosis ratio matching method, modified Liu-Tang-Zhang method and Satterthwaite-Welch method. The technical details can be found in Hong Zhang, Judong Shen and Zheyang Wu (2020) <arXiv:2005.00905>.
QuantLib bindings are provided for R using Rcpp via an evolved version of the initial header-only Quantuccia project offering an subset of QuantLib (now maintained separately just for the calendaring subset). See the included file AUTHORS for a full list of contributors to QuantLib (and hence also Quantuccia').
Quickly fits and plots psychometric functions (normal, logistic, Weibull or any or any function defined by the user) for multiple groups.
This package provides functions for making run charts, Shewhart control charts and Pareto charts for continuous quality improvement. Included control charts are: I, MR, Xbar, S, T, C, U, U', P, P', and G charts. Non-random variation in the form of minor to moderate persistent shifts in data over time is identified by the Anhoej rules for unusually long runs and unusually few crossing [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>]. Non-random variation in the form of larger, possibly transient, shifts is identified by Shewhart's 3-sigma rule [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>].
This package provides functions to manipulate dates and count days for quantitative finance analysis. The quantdates package considers leap, holidays and business days for relevant calendars in a financial context to simplify quantitative finance calculations, consistent with International Swaps and Derivatives Association (ISDA) (2006) <https://www.isda.org/book/2006-isda-definitions/> regulations.
This package provides an infrastructure for efficient processing of large-scale genetic and phenotypic data including core functions for: 1) fitting linear mixed models, 2) constructing marker-based genomic relationship matrices, 3) estimating genetic parameters (heritability and correlation), 4) performing genomic prediction and genetic risk profiling, and 5) single or multi-marker association analyses. Rohde et al. (2019) <doi:10.1101/503631>.
Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of Laver', Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, Wordscores model, the Perry and Benoit (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the Slapin and Proksch (2008) <doi:10.1111/j.1540-5907.2008.00338.x> wordfish model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear SVMs specially designed for sparse textual data.
This package provides functions for estimating ploidy levels and detecting aneuploidy in individuals using allele intensities or allele count data from high-throughput genotyping platforms, including single nucleotide polymorphism (SNP) arrays and sequencing-based technologies. Implements an extended version of the PennCNV signal standardization method by Wang et al. (2007) <doi:10.1101/gr.6861907> for higher ploidy levels. Computes B-allele frequencies (BAF), z-scores, and identifies copy number variation patterns.
Syntax for defining complex filtering expressions in a programmatic way. A filtering query, built as a nested list configuration, can be easily stored in other formats like YAML or JSON'. What's more, it's possible to convert such configuration to a valid expression that can be applied to popular dplyr package operations.
This package provides routines to create some quaternions splines: Barry-Goldman algorithm, De Casteljau algorithm, and Kochanek-Bartels algorithm. The implementations are based on the Python library splines'. Quaternions splines allow to construct spherical curves. References: Barry and Goldman <doi:10.1145/54852.378511>, Kochanek and Bartels <doi:10.1145/800031.808575>.
Helper functions for Qualitative Comparative Analysis: evaluate and plot Boolean formulae on fuzzy set score data, apply Boolean operations, compute consistency and coverage measures.
This package provides advanced functionality for performing configurational comparative research with Qualitative Comparative Analysis (QCA), including crisp-set, multi-value, and fuzzy-set QCA. It also offers advanced tools for sensitivity diagnostics and methodological evaluations of QCA.
PKG_DESC.
This package provides a range of quadratic forms are evaluated, using efficient methods. Unnecessary transposes are not performed. Complex values are handled consistently.
Mortality rates are typically provided in an abridged format, i.e., by age groups 0, [1, 5], [5, 10]', [10, 15]', and so on. Some applications necessitate a detailed (single) age description. Despite the large number of proposed approaches in the literature, only a few methods ensure great performance at both younger and higher ages. For example, the 6-term Lagrange interpolation function is well suited to mortality interpolation at younger ages (with irregular intervals), but not at older ages. The Karup-King method, on the other hand, performs well at older ages but is not suitable for younger ones. Interested readers can find a full discussion of the two stated methods in the book Shryock, Siegel, and Associates (1993).The Q2q package combines the two methods to allow for the interpolation of mortality rates across all age groups. It begins by implementing each method independently, and then the resulting curves are linked using a 5-age averaged error between the two partial curves.
It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/K, M/M/c/K/m, M/M/Infinite/K/K, Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua.
Quantile-frequency analysis (QFA) of time series based on trigonometric quantile regression. Spline quantile regression (SQR) for regression coefficient estimation. References: [1] Li, T.-H. (2012) "Quantile periodograms," Journal of the American Statistical Association, 107, 765â 776, <doi:10.1080/01621459.2012.682815>. [2] Li, T.-H. (2014) Time Series with Mixed Spectra, CRC Press, <doi:10.1201/b15154> [3] Li, T.-H. (2022) "Quantile Fourier transform, quantile series, and nonparametric estimation of quantile spectra," <doi:10.48550/arXiv.2211.05844>. [4] Li, T.-H. (2024) "Quantile crossing spectrum and spline autoregression estimation," <doi:10.48550/arXiv.2412.02513>. [5] Li, T.-H. (2024) "Spline autoregression method for estimation of quantile spectrum," <doi:10.48550/arXiv.2412.17163>. [6] Li, T.-H., and Megiddo, N. (2025) "Spline quantile regression," <doi:10.48550/arXiv.2501.03883>.
Symbolic calculation and evaluation of multivariate polynomials with rational coefficients. This package is strongly inspired by the spray package. It provides a function to compute Gröbner bases (reference <doi:10.1007/978-3-319-16721-3>). It also includes some features for symmetric polynomials, such as the Hall inner product. The header file of the C++ code can be used by other packages. It provides the templated class Qspray that can be used to represent and to deal with multivariate polynomials with another type of coefficients.
Design of QTL (quantitative trait locus) experiments involves choosing which strains to cross, the type of cross, genotyping strategies, phenotyping strategies, and the number of progeny to raise and phenotype. This package provides tools to help make such choices. Sen and others (2007) <doi:10.1007/s00335-006-0090-y>.
Quantile correlation-sure independence screening (QC-SIS) and composite quantile correlation-sure independence screening (CQC-SIS) for ultrahigh-dimensional data.
The quantity-intensity (Q/I) relationships, first introduced by Beckett (1964), can be employed to assess the K supplying capacity of different soils based on solid-solution exchange equilibria. Such relationships describe the changes in K+ concentration in the soil solution (or the intensity factor) in relation to the corresponding changes in K+ at exchange sites of the soil (or the capacity or quantity factor). Activity ratio of K to Ca or Ca+Mg is generally used as the variable denoting the intensity, whereas, change in exchangeable K is used to denote the quantity factor.
Developed to perform the estimation and inference for regression coefficient parameters in longitudinal marginal models using the method of quadratic inference functions. Like generalized estimating equations, this method is also a quasi-likelihood inference method. It has been showed that the method gives consistent estimators of the regression coefficients even if the correlation structure is misspecified, and it is more efficient than GEE when the correlation structure is misspecified. Based on Qu, A., Lindsay, B.G. and Li, B. (2000) <doi:10.1093/biomet/87.4.823>.
Create static QR codes in R. The content of the QR code is exactly what the user defines. We don't add a redirect URL, making it impossible for us to track the usage of the QR code. This allows to generate fast, free to use and privacy friendly QR codes.
This package provides functions for estimating the potential dispersal of tree species using regeneration densities and dispersal distances to nearest seed trees. A quantile regression is implemented to determine the dispersal potential. Spatial prediction can be used to identify natural regeneration potential for forest restoration as described in Axer et al (2021) <doi:10.1016/j.foreco.2020.118802>.